分析 由于直線過定點M(3,1),點M在圓C:(x-1)2+(y-2)2=25的內(nèi)部,故直線被圓截得的弦長最短時,CM垂直于直線l,根據(jù)它們的斜率之積等于-1求出m的值.
解答 解:直線l:(2m+1)x+(m+1)y-7m-4=0 即(x+y-4)+m(2x+y-7)=0,過定點M(3,1),
由于點M在圓C:(x-1)2+(y-2)2=25的內(nèi)部,故直線被圓截得的弦長最短時,CM垂直于直線l,
故它們的斜率之積等于-1,即1−23−1×(−2m+1m+1)=-1,解得m=-34,
故答案為:-34.
點評 本題主要考查直線和圓的位置關(guān)系,直線過定點問題,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | √2+1 | B. | √3 | C. | √2-1 | D. | 2√2-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 512 | B. | −512 | C. | −125 | D. | 125 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1]∪{32} | B. | (0,32] | C. | (0,1)∪{32} | D. | (0,32)∪{0} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 15 | B. | 3 | C. | -3 | D. | -15 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com