平面內(nèi)到兩定點(diǎn)的距離之和為4的點(diǎn)M的軌跡是      (    )
A.橢圓B.線段C.圓D.以上都不對(duì)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知坐標(biāo)平面上的兩點(diǎn),動(dòng)點(diǎn)P到A、B兩點(diǎn)距離之和為常數(shù)2,則動(dòng)點(diǎn)P的軌跡是(   )
A.橢圓        B.雙曲線       C.拋物線       D.線段

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知?jiǎng)狱c(diǎn)P與平面上兩定點(diǎn)連線的斜率的積為定值.
(1)試求動(dòng)點(diǎn)P的軌跡方程C.
(2)設(shè)直線與曲線C交于M、N兩點(diǎn),求|MN|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知定點(diǎn),動(dòng)點(diǎn)滿足
(1)求動(dòng)點(diǎn)的軌跡方程,并說明方程表示什么曲線;
(2)當(dāng)時(shí),求的最大值和最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分15分)已知點(diǎn),一動(dòng)圓過點(diǎn)且與圓內(nèi)切.
(Ⅰ)求動(dòng)圓圓心的軌跡的方程;
(Ⅱ)設(shè)點(diǎn),點(diǎn)為曲線上任一點(diǎn),求點(diǎn)到點(diǎn)距離的最大值;
(Ⅲ)在的條件下,設(shè)△的面積為是坐標(biāo)原點(diǎn),是曲線上橫坐標(biāo)為的點(diǎn)),以為邊長(zhǎng)的正方形的面積為.若正數(shù)滿足,問是否存在最小值,若存在,請(qǐng)求出此最小值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分16分)
如圖,點(diǎn)A在直線上移動(dòng),等腰△OPA的頂角∠OPA為120°(OP,A按順時(shí)針方向排列),求點(diǎn)P的軌跡方程
    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)閱記分.)
A.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,兩點(diǎn)間的距離是        
B.(不等式選講選做題)若不等式的解集為         
C.(幾何證明選講選做題)如圖,點(diǎn)是圓上的點(diǎn), 且,則圓的面積等于      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知兩個(gè)點(diǎn)M(-5,0)和N(5,0),若直線上存在點(diǎn)P,使|PM|-|PN|=6,則稱該直線為“B型直線”,給出下列直線:①y=x+1,②y=x, ③y=2,④y=2x+1,其中為“B型直線”的是        .(填上所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

是過圓錐曲線中心的任一條弦,是二次曲線上異于的任一點(diǎn),且均與坐標(biāo)軸不平行,則對(duì)于橢圓,有,類似的,對(duì)于雙曲線,有        。

查看答案和解析>>

同步練習(xí)冊(cè)答案