【題目】己知函數(shù),其中.
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)設(shè),,若存在,對(duì)任意的實(shí)數(shù),恒有成立,求的最大值.
【答案】(Ⅰ)見(jiàn)解析;(Ⅱ)
【解析】
(Ⅰ)求導(dǎo)后討論的正負(fù)號(hào),即可說(shuō)明導(dǎo)函數(shù)的正負(fù)號(hào),即可說(shuō)明單調(diào)性。
(Ⅱ)題干等價(jià)于存在,對(duì)任意的實(shí)數(shù),恒有,記即討論的取值,判斷在的單調(diào)性,求出其最小值使成立。
解:(Ⅰ)由題,
(1)當(dāng)時(shí),恒成立,
故此時(shí)函數(shù)在上單調(diào)遞增;
(2)當(dāng)時(shí),函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,
(Ⅱ)不等式
記,,
則,
其中
由(Ⅰ)可知函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,
(1)若,則,,
函數(shù)在區(qū)間上單調(diào)遞增,
,
(2)若即時(shí),,
函數(shù)在區(qū)間上單調(diào)遞減,
,
;
(3)當(dāng)時(shí),此時(shí)且在內(nèi)遞減,
在區(qū)間內(nèi)有唯一零點(diǎn),記為,
函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增
從而,其中
,
令,,則
所以,
綜上,當(dāng)時(shí),取到最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)生對(duì)其親屬30人的飲食習(xí)慣進(jìn)行了一次調(diào)查,并用莖葉圖表示30人的飲食指數(shù).(說(shuō)明:圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的人,飲食以肉類為主.)
(1)根據(jù)以上數(shù)據(jù)完成下列的列聯(lián)表;
(2)能否有99%的把握認(rèn)為其親屬的飲食習(xí)慣與年齡有關(guān),并寫出簡(jiǎn)要分析.
主食蔬菜 | 主食肉類 | 合計(jì) | ||
50歲以下 | ||||
50歲以上 | ||||
合計(jì) | ||||
參考公式:
0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,命題對(duì)任意,不等式成立;命題存在,使得成立.
(1)若p為真命題,求m的取值范圍;
(2)若p且q為假,p或q為真,求m的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線上有一動(dòng)點(diǎn),過(guò)點(diǎn)作直線垂直于軸,動(dòng)點(diǎn)在上,且滿足(為坐標(biāo)原點(diǎn)),記點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)已知定點(diǎn),,為曲線上一點(diǎn),直線交曲線于另一點(diǎn),且點(diǎn)在線段上,直線交曲線于另一點(diǎn),求的內(nèi)切圓半徑的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱錐D-ABC中,,E,F分別為DB,AB的中點(diǎn),且.
(1)求證:平面平面ABC;
(2)求二面角D-CE-F的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解一個(gè)小水庫(kù)中養(yǎng)殖的魚(yú)的有關(guān)情況,從這個(gè)水庫(kù)中多個(gè)不同位置捕撈出100條魚(yú),稱得每條魚(yú)的質(zhì)量(單位:kg),并將所得數(shù)據(jù)分組,畫出頻率分布直方圖(如圖所示).
(1)在下面表格中填寫相應(yīng)的頻率;
分組 | 頻率 |
(2)估計(jì)數(shù)據(jù)落在中的概率;
(3)將上面捕撈的100條魚(yú)分別作一記分組頻率號(hào)后再放回水庫(kù).幾天后再?gòu)乃畮?kù)的多處不同位置捕撈出120條魚(yú),其中帶有記號(hào)的魚(yú)有6條.請(qǐng)根據(jù)這一情況來(lái)估計(jì)該水庫(kù)中魚(yú)的總條數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(1)若曲線在點(diǎn)處的切線方程為,求函數(shù)的解析式;
(2)討論函數(shù)的單調(diào)性;
(3)若對(duì)于任意的,不等式在上恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】古希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個(gè)定點(diǎn)的距離之比為定值的點(diǎn)的軌跡是圓”.后來(lái),人們將這個(gè)圓以他的名字命名,稱為阿波羅尼斯圓,簡(jiǎn)稱阿氏圓在平面直角坐標(biāo)系中,點(diǎn).設(shè)點(diǎn)的軌跡為,下列結(jié)論正確的是( )
A. 的方程為
B. 在軸上存在異于的兩定點(diǎn),使得
C. 當(dāng)三點(diǎn)不共線時(shí),射線是的平分線
D. 在上存在點(diǎn),使得
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)為改進(jìn)服務(wù)質(zhì)量,在進(jìn)場(chǎng)購(gòu)物的顧客中隨機(jī)抽取了人進(jìn)行問(wèn)卷調(diào)查.調(diào)查后,就顧客“購(gòu)物體驗(yàn)”的滿意度統(tǒng)計(jì)如下:
滿意 | 不滿意 | |
男 | ||
女 |
是否有的把握認(rèn)為顧客購(gòu)物體驗(yàn)的滿意度與性別有關(guān)?
若在購(gòu)物體驗(yàn)滿意的問(wèn)卷顧客中按照性別分層抽取了人發(fā)放價(jià)值元的購(gòu)物券.若在獲得了元購(gòu)物券的人中隨機(jī)抽取人贈(zèng)其紀(jì)念品,求獲得紀(jì)念品的人中僅有人是女顧客的概率.
附表及公式:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com