已知曲線C上的動(dòng)點(diǎn)P()滿足到定點(diǎn)A(-1,0)的距離與到定點(diǎn)B(1,0)距離之比為
(1)求曲線C的方程。
(2)過點(diǎn)M(1,2)的直線與曲線C交于兩點(diǎn)M、N,若|MN|=4,求直線的方程。
(1):(或);(2)或
解析試題分析:(1)根據(jù)動(dòng)點(diǎn)P(x,y)滿足到定點(diǎn)A(-1,0)的距離與到定點(diǎn)B(1,0)距離之比,建立方程,化簡(jiǎn)可得曲線C的方程.
(2)分類討論,設(shè)出直線方程,求出圓心到直線的距離,利用勾股定理,即可求得直線l的方程.
試題解析:(1)由題意得|PA|=|PB| 2分;
故 3分;
化簡(jiǎn)得:(或)即為所求。 5分;
(2)當(dāng)直線的斜率不存在時(shí),直線的方程為,
將代入方程得,
所以|MN|=4,滿足題意。 8分;
當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為+2
由圓心到直線的距離 10分;
解得,此時(shí)直線的方程為
綜上所述,滿足題意的直線的方程為:或。 12分.
考點(diǎn):(1)圓的標(biāo)準(zhǔn)方程;(2)點(diǎn)到直線的距離公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓滿足:①截軸所得弦長(zhǎng)為;②被軸分成兩段圓弧,其弧長(zhǎng)的比為;③圓心到直線:的距離為的圓的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
AB是圓O的直徑,D為圓O上一點(diǎn),過D作圓O的切線交AB延長(zhǎng)線于點(diǎn)C,若DA=DC,求證:AB=2BC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知以點(diǎn)C (t∈R,t≠0)為圓心的圓與x軸交于點(diǎn)O,A,與y軸交于點(diǎn)O,B,其中O為原點(diǎn).
(1)求證:△AOB的面積為定值;
(2)設(shè)直線2x+y-4=0與圓C交于點(diǎn)M,N,若|OM|=|ON|,求圓C的方程;
(3)在(2)的條件下,設(shè)P,Q分別是直線l:x+y+2=0和圓C上的動(dòng)點(diǎn),求|PB|+|PQ|的最小值及此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知?jiǎng)訄A與直線相切且與圓:外切。
(1)求圓心的軌跡方程;
(2)過定點(diǎn)作直線交軌跡于兩點(diǎn),是點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn),求證:;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓C的方程為:x2+y2-2mx-2y+4m-4=0.(m∈R).
(1)試求m的值,使圓C的面積最。
(2)求與滿足(1)中條件的圓C相切,且過點(diǎn)(1,-2)的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,已知圓:和圓:
(1)若直線l過點(diǎn)A(4,0),且被圓C1截得的弦長(zhǎng)為2,求直線l的方程;
(2)設(shè)P為平面上的點(diǎn),滿足:存在過點(diǎn)P的無窮多對(duì)互相垂直的直線和,它們分別與圓和圓相交,且直線被圓截得的弦長(zhǎng)與直線被圓截得的弦長(zhǎng)相等,試求所有滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,已知以點(diǎn) 為圓心的圓與直線 相切,過點(diǎn)的動(dòng)直線 與圓 相交于兩點(diǎn),是的中點(diǎn),直線與相交于點(diǎn) .
(1)求圓的方程;
(2)當(dāng)時(shí),求直線的方程;
(3)是否為定值?如果是,求出其定值;如果不是,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com