【題目】如圖,在直角梯形中, , , 中點(diǎn),將沿折起,使得

)求證:平面平面

)若的中點(diǎn),求三棱錐的體積.

【答案】(1)見解析;(2)

【解析】試題分析:1)由底面,得,在證明四邊形為正方形,得到由線面垂直判定定理可得結(jié)論;(2, 的中點(diǎn),得,結(jié)合(1)知底面,得.從而得到.進(jìn)一步得到底面,然后求解直角三角形得到三角形的面積代入體積公式得答案.

試題解析:)證明:∵底面,

又由于, ,是正方形,

,又,故平面,

平面∴平面平面

,又平面, 平面,平面,

∴點(diǎn)到平面的距離即為點(diǎn)到平面的距離.

又∵, 的中點(diǎn),∴

由()知有平面,

由題意得,故

于是,由,可得平面,

又∵平面,

,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng),時(shí),求滿足的值;

(2)若函數(shù)是定義在上的奇函數(shù).

①存在,使得不等式有解,求實(shí)數(shù)的取值范圍;

②若函數(shù)滿足,若對任意,不等式恒成立,求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代著名數(shù)學(xué)經(jīng)典.其中對勾股定理的論術(shù)比西方早一千多年,其中有這樣一個(gè)問題:“今有圓材埋在壁中,不知大小.以鋸鋸之,深一寸,鋸道長一尺.問徑幾何?”其意為:今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸該材料,鋸口深1寸,鋸道長1尺.問這塊圓柱形木料的直徑是多少?長為1丈的圓柱形木材部分鑲嵌在墻體中,截面圖如圖所示(陰影部分為鑲嵌在墻體內(nèi)的部分).已知弦尺,弓形高寸,估算該木材鑲嵌在墻中的體積約為( )

(注:1丈=10尺=100寸, ,

A. 633立方寸 B. 620立方寸 C. 610立方寸 D. 600立方寸

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了展示中華漢字的無窮魅力,傳遞傳統(tǒng)文化,提高學(xué)習(xí)熱情,某校開展《中國漢字聽寫大會(huì)》的活動(dòng).為響應(yīng)學(xué)校號(hào)召,2(9)班組建了興趣班,根據(jù)甲、乙兩人近期8次成績畫出莖葉圖,如圖所示(把頻率當(dāng)作概率).

(1)求甲、乙兩人成績的平均數(shù)和中位數(shù);

(2)現(xiàn)要從甲、乙兩人中選派一人參加比賽,從統(tǒng)計(jì)學(xué)的角度,你認(rèn)為派哪位學(xué)生參加比較合適?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓ab>0的離心率,過點(diǎn)的直線與原點(diǎn)的距離為

1求橢圓的方程

2已知定點(diǎn),若直線與橢圓交于C、D兩點(diǎn)是否存在k的值,使以CD為直徑的圓過E點(diǎn)?請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,EBC的中點(diǎn),F在棱AC上,且AF=3FC

(1)求三棱錐D-ABC的體積

(2)求證:平面DAC⊥平面DEF;

(3)若MDB中點(diǎn),N在棱AC上,且CN=CA,求證:MN∥平面DEF

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個(gè)焦點(diǎn)與上、下頂點(diǎn)構(gòu)成直角三角形,以橢圓的長軸長為直徑的圓與直線相切.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)過橢圓右焦點(diǎn)且不平行于軸的動(dòng)直線與橢圓相交于兩點(diǎn),探究在軸上是否存在定點(diǎn),使得為定值?若存在,試求出定值和點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱 中, , , 是棱上的動(dòng)點(diǎn).

證明:

若平面分該棱柱為體積相等的兩個(gè)部分,試確定點(diǎn)的位置,并求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廣場有一塊不規(guī)則的綠地如圖所示,城建部門欲在該地上建造一個(gè)底座為三角形的環(huán)境標(biāo)志,小李,小王設(shè)計(jì)的底座形狀分別為 ,經(jīng)測量米, 米, 米,

(I)求的長度;

(Ⅱ)若環(huán)境標(biāo)志的底座每平方米造價(jià)為元,不考慮其他因素,小李,小王誰的設(shè)計(jì)建造費(fèi)用最低(請說明理由),最低造價(jià)為多少?(

查看答案和解析>>

同步練習(xí)冊答案