Processing math: 26%
12.將一顆質(zhì)地均勻的骰子先后拋擲2次,觀察其向上的點數(shù),分別記為x,y.
(1)若記“x+y=8”為事件A,求事件A發(fā)生的概率;
(2)若記“x2+y2≤12”為事件B,求事件B發(fā)生的概率.

分析 (1)先后拋擲2次骰子,第一次骰子向上的點數(shù)有6種可能的結(jié)果,對于每一種,第二次又有6種可能出現(xiàn)的結(jié)果,于是基本事件一共有6×6=36(種),求出事件A的個數(shù),即可求事件A發(fā)生的概率;
(2)若記“x2+y2≤12”為事件B,求出事件B的個數(shù),即可求事件B發(fā)生的概率.

解答 解:將骰子拋擲一次,它出現(xiàn)的點數(shù)有1,2,3,4,5,6這六種結(jié)果.先后拋擲2次骰子,第一次骰子向上的點數(shù)有6種可能的結(jié)果,對于每一種,第二次又有6種可能出現(xiàn)的結(jié)果,于是基本事件一共有6×6=36(種)…(4分)
(1)記“x+y=8”為事件A,則A事件發(fā)生的基本事件有5個,所以所求的概率為PA=536…(8分)
(2)記“x2+y2≤12”為事件B,則B事件發(fā)生的基本事件有6個,所以所求的概率為PB=636=16…(12分)
答:事件A發(fā)生的概率為536,事件B發(fā)生的概率為16…(14分)

點評 本題考查古典概型問題,考查學(xué)生的計算能力,確定基本事件的個數(shù)是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知點A(3+1,0),B(0,2).若直線l:y=k(x-1)+1與線段AB相交,則直線l傾斜角α的取值范圍是( �。�
A.[\frac{3π}{4},\frac{5π}{6}]B.[0,\frac{3π}{4}]C.[0,\frac{3π}{4}]∪[\frac{5π}{6},π)D.[\frac{5π}{6},π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.計算:
(1)[(5\frac{4}{9}0.5+(0.008)-\frac{2}{3}÷(0.2)-1]÷0.06250.25;
(2)[(1-log63)2+log62•log618]÷log64.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.圓x2+y2-x+2y=0的圓心坐標(biāo)為(\frac{1}{2},-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.有一張畫有內(nèi)接正方形的圓形紙片,若隨機(jī)向圓形紙片內(nèi)丟一粒小豆子,則豆子落入正方形內(nèi)的概率為\frac{2}{π}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖(1)、(2)、(3)、(4)為四個幾何體的三視圖,根據(jù)三視圖可判斷這四個幾何體依次為(  ) 
A.三棱臺、三棱柱、圓錐、圓柱B.三棱臺、三棱錐、圓錐、圓臺
C.三棱柱、四棱錐、圓錐、圓臺D.三棱柱、三棱臺、圓錐、圓臺

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=kx+b(k>0),若x∈[0,1],y∈[-1,1],則函數(shù)y=f(x)的解析式是(  )
A.y=2x-1B.y=\frac{1}{2}(x-1)C.y=2x-1或y=-2x+1D.y=-2x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在三棱錐P-ABC中,AB=AC=2PA=2,∠PAB=∠PAC=∠BAC=\frac{π}{3}
(Ⅰ) 證明:AP⊥BC;
(Ⅱ)求三棱錐P-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)命題p:實數(shù)x滿足:x2-4ax+3a2<0,其中a>0,命題q:實數(shù)x滿足x=(\frac{1}{2}m-1,其中m∈(1,2).
(1)若a=\frac{1}{4},且p∧q為真,求實數(shù)x的取值范圍;
(2)¬p是¬q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案