(1)用反證法證明:在一個(gè)三角形中,至少有一個(gè)內(nèi)角大于或等于;
(2)已知,試用分析法證明:.
(1)見解析;(2)見解析
解析試題分析:
(1)反證法證明問題的關(guān)鍵是:提出結(jié)論的反面,并以此為條件推導(dǎo)導(dǎo)出矛盾;(2)分析法要求由結(jié)論成立反推條件(由果索因).
試題解析:
(1)假設(shè)在一個(gè)三角形中,沒有一個(gè)內(nèi)角大于或等于,
即均小于 2分
則三內(nèi)角和小于, 4分
這與三角形中三個(gè)內(nèi)角和等于矛盾,
故假設(shè)不成立,原命題成立; 6分
(2)要證上式成立,需證
需證 8分
需證
需證
需證 10分
只需證
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4f/8/1avvy4.png" style="vertical-align:middle;" />顯然成立,所以原命題成立. 12分
考點(diǎn):(1)反證法;(2)分析法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
若點(diǎn)在內(nèi),則有結(jié)論 ,把命題類比推廣到空間,若點(diǎn)在四面體內(nèi),則有結(jié)論:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某少數(shù)民族的刺繡有著悠久的歷史,下圖(1)、(2)、(3)、(4)為她們刺繡最簡(jiǎn)單的四個(gè)圖案,這些圖案都由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個(gè)圖形包含個(gè)小正方形.
(Ⅰ)求出;
(Ⅱ)利用合情推理的“歸納推理思想”歸納出與的關(guān)系式,
(Ⅲ)根據(jù)你得到的關(guān)系式求的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)是一個(gè)自然數(shù),是的各位數(shù)字的平方和,定義數(shù)列:是自然數(shù),(,).
(1)求,;
(2)若,求證:;
(3)當(dāng)時(shí),求證:存在,使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
是否存在常數(shù)a,b使等式對(duì)于一切n∈N*都成立?若存在,求出a,b的值,若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
在平面幾何里有射影定理:“設(shè)△ABC的兩邊,D是A點(diǎn)在BC邊上的射影,則.”。拓展到空間,若三棱錐A-BCD的三個(gè)側(cè)面ABC、ACD、ADB兩兩互相垂直,點(diǎn)O是頂點(diǎn)A在底面BCD上的射影且O點(diǎn)在△BCD內(nèi),類比平面上三角形的射影定理,△ABC、△BOC、△BCD三者的面積關(guān)系是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
平面上有n(n≥2)個(gè)圓,其中每?jī)蓚(gè)圓都相交于兩點(diǎn),任何三個(gè)圓無公共點(diǎn).這n個(gè)圓將平面分成塊區(qū)域,可數(shù)得,則的表達(dá)式為
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com