函數(shù)y=x+sinx,x∈[0,
π
2
]的值域是
 
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)函數(shù)y=x+sinx在區(qū)間[0,
π
2
]上是增函數(shù),求得它的值域.
解答: 解:由于函數(shù)y=x+sinx在區(qū)間[0,
π
2
]上是增函數(shù),故當(dāng)x=0時(shí),函數(shù)取得最小值為0,當(dāng)x=
π
2
時(shí),函數(shù)取得最大值為
π
2
+1,
故答案為:[0,
π
2
+1]
點(diǎn)評:本題主要考查利用函數(shù)的單調(diào)性求函數(shù)的值域的方法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2
-alnx(a∈R)
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)設(shè)g(x)=f(x)+2x,若g(x)在[1,e]上不單調(diào)且僅在x=e處取得最大值,求a的取值范圍;
(3)當(dāng)a=1時(shí),探究當(dāng)x∈(1,+∞)時(shí),函數(shù)y=f(x)的圖象與函數(shù)h(x)=
1
2
x2
-x+1圖象之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正實(shí)數(shù)a,b,c滿足a+b+c=1,
1
a
+
1
b
+
1
c
=10,則abc的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱錐的高比底面邊長小4,且其外接球的表面積為196π,則該正三棱錐的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校學(xué)生參加了“鉛球”和“立定跳遠(yuǎn)”兩個(gè)科目的體能測試,每個(gè)科目的成績分為A,B,C,D,E五個(gè)等級,分別對應(yīng)5分,4分,3分,2分,1分,該校某班學(xué)生兩科目測試成績的數(shù)據(jù)統(tǒng)計(jì)如圖所示,其中“鉛球”科目的成績?yōu)镋的學(xué)生有8人.

(Ⅰ)求該班學(xué)生中“立定跳遠(yuǎn)”科目中成績?yōu)锳的人數(shù);
(Ⅱ)若該班共有10人的兩科成績得分之和大于7分,其中有2人10分,2人9分,6人8分.從這10人中隨機(jī)抽取兩人,求兩人成績之和ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

地面上有兩個(gè)同心圓(如圖),其半徑分別為1,2.若向圖中最大的圓內(nèi)投點(diǎn)且投到圖中陰影區(qū)域的概率為
5
8
,則兩直線所夾銳角的弧度數(shù)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的頂點(diǎn)B、C在橢圓
x2
4
+
y3
3
=1上,頂點(diǎn)A是橢圓的一個(gè)焦點(diǎn),且橢圓的另外一個(gè)焦點(diǎn)在BC邊上,則△ABC的周長是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式|x+1|+|x-2|>a的解集為R,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cos2x=
1
3
,x∈(
π
2
,π)
,則sin4x=
 

查看答案和解析>>

同步練習(xí)冊答案