【題目】已知橢圓:的右焦點為拋物線的焦點,,是橢圓上的兩個動點,且線段長度的最大值為4.
(1)求橢圓的標準方程;
(2)若,求面積的最小值.
【答案】(1) ; (2).
【解析】
(1)根據(jù)拋物線和橢圓的幾何性質(zhì),求得的值,即可得到橢圓的標準方程;
(2)當(dāng),為橢圓頂點時,易得的面積;當(dāng),不是橢圓頂點時,設(shè)直線的方程為,聯(lián)立方程組,利用根和系數(shù)的關(guān)系,以及弦長公式,求得,同理求得,得到面積的表達式,利用基本不等式,即可求解.
(1)∵的焦點為,
∴橢圓的右焦點為,即,
又的最大值為4,因此,
∴,,
所以橢圓的標準方程為.
(2)①當(dāng),為橢圓頂點時,易得的面積為,
②當(dāng),不是橢圓頂點時,設(shè)直線的方程為:,
由,得,所以,
由,得直線的方程為:,
所以,
所以
,
,當(dāng)且僅當(dāng)時等號成立,
所以,所以,
綜上,面積的最小值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年1月10日,引發(fā)新冠肺炎疫情的COVID-9病毒基因序列公布后,科學(xué)家們便開始了病毒疫苗的研究過程.但是類似這種病毒疫苗的研制需要科學(xué)的流程,不是一朝一夕能完成的,其中有一步就是做動物試驗.已知一個科研團隊用小白鼠做接種試驗,檢測接種疫苗后是否出現(xiàn)抗體.試驗設(shè)計是:每天接種一次,3天為一個接種周期.已知小白鼠接種后當(dāng)天出現(xiàn)抗體的概率為,假設(shè)每次接種后當(dāng)天是否出現(xiàn)抗體與上次接種無關(guān).
(1)求一個接種周期內(nèi)出現(xiàn)抗體次數(shù)的分布列;
(2)已知每天接種一次花費100元,現(xiàn)有以下兩種試驗方案:
①若在一個接種周期內(nèi)連續(xù)2次出現(xiàn)抗體即終止本周期試驗,進行下一接種周期,試驗持續(xù)三個接種周期,設(shè)此種試驗方式的花費為元;
②若在一個接種周期內(nèi)出現(xiàn)2次或3次抗體,該周期結(jié)束后終止試驗,已知試驗至多持續(xù)三個接種周期,設(shè)此種試驗方式的花費為元.
比較隨機變量和的數(shù)學(xué)期望的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙兩個班級進行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績,得到如下所示的列聯(lián)表:
優(yōu)秀 | 非優(yōu)秀 | 總計 | |
甲班 | 10 | b | |
乙班 | c | 30 | |
總計105 |
已知在全部105人中隨機抽取1人,成績優(yōu)秀的概率為,則下列說法正確的是( )
參考公式:
附表:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
A.列聯(lián)表中c的值為30,b的值為35
B.列聯(lián)表中c的值為15,b的值為50
C.根據(jù)列聯(lián)表中的數(shù)據(jù),若按95%的可靠性要求,能認為“成績與班級有關(guān)系”
D.根據(jù)列聯(lián)表中的數(shù)據(jù),若按95%的可靠性要求,不能認為“成績與班級有關(guān)系”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某單位甲、乙、丙三個部門的員工人數(shù)分別為24,16,16.現(xiàn)采用分層抽樣的方法從中抽取7人,進行睡眠時間的調(diào)查.
(I)應(yīng)從甲、乙、丙三個部門的員工中分別抽取多少人?
(II)若抽出的7人中有4人睡眠不足,3人睡眠充足,現(xiàn)從這7人中隨機抽取3人做進一步的身體檢查.
(i)用X表示抽取的3人中睡眠不足的員工人數(shù),求隨機變量X的分布列與數(shù)學(xué)期望;
(ii)設(shè)A為事件“抽取的3人中,既有睡眠充足的員工,也有睡眠不足的員工”,求事件A發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在我市舉行“四川省運動會”期間,組委會將甲、乙、丙、丁四位志愿者全部分配到三個運動場館執(zhí)勤.若每個場館至少分配一人,則不同分配方案的種數(shù)是( )
A. 24B. 36C. 72D. 96
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,側(cè)面底面,底面是平行四邊形, , , , 為的中點,點在線段上.
(Ⅰ)求證: ;
(Ⅱ)試確定點的位置,使得直線與平面所成的角和直線與平面所成的角相等.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱,平面,,,為的中點。
(1)求證:平面;
(2)若,求二面角的余弦值;
(3)若點在線段上,且平面,確定點的位置并求線段的長。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列有關(guān)命題的說法正確的是( )
A. 命題“若,則”的否命題為:“若則”
B. 若為真命題,為假命題,則均為假命題
C. 命題“若成等比數(shù)列,則”的逆命題為真命題
D. 命題“若,則”的逆否命題為真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個命題:
①樣本方差反映的是所有樣本數(shù)據(jù)與樣本平均值的偏離程度;
②某校高三一級部和二級部的人數(shù)分別是m、n,本次期末考試兩級部數(shù)學(xué)平均分分別是a、b,則這兩個級部的數(shù)學(xué)平均分為
③某中學(xué)采用系統(tǒng)抽樣方法,從該校高一年級全體800名學(xué)生中抽50名學(xué)生做牙齒健康檢查,現(xiàn)將800名學(xué)生從001到800進行編號,已知從497--512這16個數(shù)中取得的學(xué)生編號是503,則初始在第1小組00l~016中隨機抽到的學(xué)生編號是007.
其中命題正確的個數(shù)是( )
A.0個 B.1個 C.2個 D.3個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com