【題目】如圖,四棱錐中,底面ABCD為菱形,PA⊥平面ABCD,EPD的中點(diǎn).

1)求證:PB∥平面AEC;

2)求證:平面PAC⊥平面PBD

3)當(dāng)PA=AB=2,∠ABC=時(shí),求三棱錐的體積.

【答案】1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3

【解析】

1)由中位線定理以及線面平行的判定定理證明即可;

2)利用線面垂直的性質(zhì)定理以及面面垂直的判定定理證明即可;

3)利用三角形面積公式得出的面積,再由棱錐的體積公式求解即可.

1)取AC、BD中點(diǎn)為O,連接EO.

證明:底面ABCD為菱形且OACBD的交點(diǎn)

OBD中點(diǎn).∵EPD中點(diǎn),.

平面ABC平面AEC平面AEC.

2底面ABCD為菱形,.

平面ABCD,平面ABCD,.

,平面,平面PAC.

平面PBD平面平面PBD.

3,

.

.

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f (x)=(x-2)ex+a(x-1)2,討論f (x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分13分)

某產(chǎn)品按行業(yè)生產(chǎn)標(biāo)準(zhǔn)分成8個(gè)等級(jí),等級(jí)系數(shù)X依次為1,2,……,8,其中X≥5為標(biāo)準(zhǔn)A,X≥3為標(biāo)準(zhǔn)B,已知甲廠執(zhí)行標(biāo)準(zhǔn)A生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價(jià)為6/件;乙廠執(zhí)行標(biāo)準(zhǔn)B生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價(jià)為4/件,假定甲、乙兩廠得產(chǎn)品都符合相應(yīng)的執(zhí)行標(biāo)準(zhǔn)

I)已知甲廠產(chǎn)品的等級(jí)系數(shù)X1的概率分布列如下所示:

X1的數(shù)字期望EX1=6,求a,b的值;

II)為分析乙廠產(chǎn)品的等級(jí)系數(shù)X2,從該廠生產(chǎn)的產(chǎn)品中隨機(jī)抽取30件,相應(yīng)的等級(jí)系數(shù)組成一個(gè)樣本,數(shù)據(jù)如下:

3 5 3 3 8 5 5 6 3 4

6 3 4 7 5 3 4 8 5 3

8 3 4 3 4 4 7 5 6 7

用這個(gè)樣本的頻率分布估計(jì)總體分布,將頻率視為概率,求等級(jí)系數(shù)X2的數(shù)學(xué)期望.

在(I)、(II)的條件下,若以性價(jià)比為判斷標(biāo)準(zhǔn),則哪個(gè)工廠的產(chǎn)品更具可購(gòu)買性?說(shuō)明理由.

注:(1)產(chǎn)品的性價(jià)比”=;

2性價(jià)比大的產(chǎn)品更具可購(gòu)買性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且,其中.

1)求及數(shù)列的通項(xiàng)公式;

2)若,為整數(shù),且對(duì)任意的,恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,,,.

1)求證:數(shù)列是等比數(shù)列;

2)設(shè)數(shù)列的前項(xiàng)和為,,點(diǎn)在直線上,若不等式對(duì)于恒成立,求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為則判斷框內(nèi)應(yīng)填入(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】①在中,若,,則此三角形的解的情況是兩解.

②數(shù)列滿足,,則

③在中,為中線上的一個(gè)動(dòng)點(diǎn),若,則的最小值是

④已知,則

⑤已知等比數(shù)列的前項(xiàng)和為,則,成等比數(shù)列.

以上命題正確的有______(只填序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P(xy)在△ABC的邊界和內(nèi)部運(yùn)動(dòng),其中A(1,0),B(2,1),C(44).z=2x-y的最小值為M,最大值為N.

1)求M,N;

2)若m+n=M,m>0,n>0,求的最小值,并求此時(shí)的m,n的值;

3)若m+n+mn=N,m>0n>0,求mn的最大值和m+n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知圓的圓心在直線上,且過(guò)點(diǎn),與直線相切.

)求圓的方程

)設(shè)直線與圓相交于,兩點(diǎn).求實(shí)數(shù)的取值范圍.

的條件下,是否存在實(shí)數(shù),使得弦的垂直平分線過(guò)點(diǎn),若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案