(2013•湖北)在平面直角坐標(biāo)系中,若點(diǎn)P(x,y)的坐標(biāo)x,y均為整數(shù),則稱點(diǎn)P為格點(diǎn).若一個(gè)多邊形的頂點(diǎn)全是格點(diǎn),則稱該多邊形為格點(diǎn)多邊形.格點(diǎn)多邊形的面積記為S,其內(nèi)部的格點(diǎn)數(shù)記為N,邊界上的格點(diǎn)數(shù)記為L.例如圖中△ABC是格點(diǎn)三角形,對應(yīng)的S=1,N=0,L=4.
(1)圖中格點(diǎn)四邊形DEFG對應(yīng)的S,N,L分別是 _________ 
(2)已知格點(diǎn)多邊形的面積可表示為S=aN+bL+c其中a,b,c為常數(shù).若某格點(diǎn)多邊形對應(yīng)的N=71,L=18,則S= _________ (用數(shù)值作答).
(1)3,1,6;(2)79.
(1)觀察圖形,可得S=3,N=1,L=6;
(2)不妨設(shè)某個(gè)格點(diǎn)四邊形由兩個(gè)小正方形組成,此時(shí),S=1,N=0,L=6
∵格點(diǎn)多邊形的面積S=aN+bL+c,
∴結(jié)合圖中的格點(diǎn)三角形ABC及格點(diǎn)四邊形DEFG可得
,∴S=N+﹣1
將N=71,L=18代入可得S=79.
故答案為:(1)3,1,6;(2)79.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(2013·杭州模擬)已知數(shù)列{an}的前n項(xiàng)和Sn=-ann-1+2(n∈N*),數(shù)列{bn}滿足bn=2nan
(1)求證數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式.
(2)設(shè)數(shù)列的前n項(xiàng)和為Tn,證明:n∈N*且n≥3時(shí),Tn
(3)設(shè)數(shù)列{cn}滿足an(cn-3n)=(-1)n-1λn(λ為非零常數(shù),n∈N*),問是否存在整數(shù)λ,使得對任意n∈N*,都有cn+1>cn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

數(shù)列的前n項(xiàng)和為,存在常數(shù)A,B,C,使得對任意正整數(shù)n都成立.
⑴若數(shù)列為等差數(shù)列,求證:3A B+C=0;
⑵若設(shè)數(shù)列的前n項(xiàng)和為,求;
⑶若C=0,是首項(xiàng)為1的等差數(shù)列,設(shè)數(shù)列的前2014項(xiàng)和為P,求不超過P的最大整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(2014·佛山模擬)數(shù)列{an}滿足an+an+1=(n∈N*),a2=2,Sn是數(shù)列{an}的前n項(xiàng)和,則S2015為(  )
A.502B.504C.D.2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在數(shù)列中,,且,,若數(shù)列滿足,則數(shù)列是(  )
A.遞增數(shù)列B.遞減數(shù)列C.常數(shù)列D.?dāng)[動(dòng)數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

等差數(shù)列中,.
(1)求的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若k,-1,b三個(gè)數(shù)成等差數(shù)列,則直線y=kx+b必經(jīng)過定點(diǎn)(  )
A.(1,-2)B.(1,2)C.(-1,2) D.(-1,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,若,則=( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知Sn為等差數(shù)列{an}的前n項(xiàng)和,a1 = -1,S3 = 6,則S6 =      

查看答案和解析>>

同步練習(xí)冊答案