中小學校車安全引起社會的關注,為了徹底消除校車安全隱患,某市購進了50臺完全相同的校車,準備發(fā)放給10所學校,每所學校至少2臺,則不同的發(fā)放方案種數(shù)為( 。
A、
C
9
41
B、
C
9
38
C、
C
9
40
D、
C
9
39
考點:計數(shù)原理的應用
專題:排列組合
分析:由題意,每所學校1臺,還剩40臺,再在中間39空中,插入9個擋板,即可求出不同的發(fā)放方案種數(shù).
解答: 解:由題意,每所學校1臺,還剩40臺,再在中間39空中,插入9個擋板,則不同的發(fā)放方案種數(shù)為
C
9
39
,
故選:D.
點評:本題考查不同的發(fā)放方案種數(shù),考查擋板法,考查學生分析解決問題的能力,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

定義
a
*
b
=|a|×|b|sinθ,θ為
a
b
的夾角,已知點A(-3,2),點B(2,3),O是坐標原點,則
OA
*
OB
等于( 。
A、5B、13C、0D、-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(
3
sinx,cosx),
b
=(cosx,cosx),設函數(shù)f(x)=
a
b

(Ⅰ)求函數(shù)f(x)=
a
b
的單調增區(qū)間;
(Ⅱ)若x∈[-
π
6
,
π
3
],求函數(shù)f(x)=的最值,并指出f(x)取得最值時x的取值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
AB
=(6,1),
BC
=(x,y),
CD
=(-2,-3)
(1)若
BC
DA
,求y=f(x)的解析式
(2)在(1)的條件下,若
AC
BD
,求x與y的值以及四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用數(shù)學歸納法證明:(1+
1
3
)(1+
1
5
)…(1+
1
2n-1
)>
2n+1
2
(n≥2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在映射f:A→B中f:(x,y)→(2x-y,x+y),則原像(-1,4)的像是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|2x+1|-|x|-2
(Ⅰ)解不等式f(x)≥0
(Ⅱ)若存在實數(shù)x,使得f(x)≤|x|+a,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用分析法證明:(
2
+1)2
17
5
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知四棱錐P-ABCD的底面ABCD是等腰梯形,側面PAD是正三角形,且CD=DA=AB=1,BC=PB2=PC2=2
(1)求證:PB⊥平面PCD;
(2)求PD與平面PAB所成的角的大。

查看答案和解析>>

同步練習冊答案