“a=-2”是“直線l1:ax-y+3=0與l2:2x-(a+1)y+4=0互相平行”的(  )
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)充分必要條件的定義結(jié)合兩直線平行的性質(zhì)及判定得出答案.
解答: 解:當(dāng)a=-2時,l1:2x+y-3=0,l2:2x+y+4=0,兩直線平行,是充分條件;
若直線l1:ax-y+3=0與l2:2x-(a+1)y+4=0互相平行,則a(a+1)=2,解得:a=-2,或a=1,不是必要條件,
故選:A.
點評:本題考查了充分必要條件,考查了兩直線平行的性質(zhì)及判定,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列條件中,α是β的充分非必要條件的是( 。
A、設(shè)a,b∈R,α:a2>b2;β:|a|>|b|;
B、設(shè)a,b∈R且ab≠0,α:
a
b
<1,β:
b
a
>1;
C、α:函數(shù)f(x)=
x-5
2x+m
的圖象關(guān)于直線y=x對稱,β:實數(shù)m=-1
D、已知A={x||x-a|<2},B={x|
2x-1
x+2
<1},α:0<a≤1;β:A⊆B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
6
-
y2
2
=1
上任一點M(x0,y0),設(shè)M關(guān)于x軸對稱點為M1,雙曲線的左右頂點分別為A1,A2
(Ⅰ)求直線A1M與直線A1M1的交點P的軌跡C的方程.
(Ⅱ)設(shè)點F(-2,0),T為直線x=-3上任意一點,過F作直線l⊥TF交(I)中軌跡C于P、Q兩點,①證明:OT經(jīng)過線段PQ中點(O為坐標(biāo)原點):②當(dāng)
|TF|
|PQ|
最小時,求點T的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:
x
x+1
<ln(1+x)<x(x>0)(x>0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:log2
x2+1
-x)=log2
x2+1
+x)-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)以a=(
3
4
)x,b=(
4
3
)x-1,c=log
3
4
x,若x>l,則a,b,c的大小關(guān)系是( 。
A、a<b<c
B、c<a<b
C、b<a<c
D、b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:x∈R,f(x)=x2-2x+4>m恒成立;q:f(x)=log5m-2x上的單調(diào)增函數(shù).若p或q為真,p且q為假,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,為了測量某湖泊兩側(cè)A,B間的距離,李寧同學(xué)首先選定了與A,B不共線的一點C,然后給出了三種測量方案:(△ABC的角A,B,C所對的邊分別記為a,b,c):①測量A,C,b;②測量a,b,C;③測量A,a,b則一定能確定A,B間距離的所有方案的序號為( 。
A、②③B、①②C、①③D、①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓錐的母線長為5,底面半徑為3,則其體積為( 。
A、15πB、30π
C、12πD、36π

查看答案和解析>>

同步練習(xí)冊答案