15.一次口試,每位考生要在8道口試題中隨機抽出2道題回答,若答對其中1題即為合格.
(1)現(xiàn)有某位考生會答8題中的5道題,那么,這位考生及格的概率有多大?
(2)如果一位考生及格的概率小于50%,則他最多只會幾道題?

分析 (1)這位考生及格的對立事件是抽出的兩道題都不會,由此利用對立事件概率計算公式能求出這位考生及格的概率.
(2)一位考生及格的概率小于50%,則他不及格的概率大于$\frac{1}{2}$,設(shè)他最多會n道題,則$\frac{{C}_{8-n}^{2}}{{C}_{8}^{2}}$$>\frac{1}{2}$,由此能求出結(jié)果.

解答 解:(1)∵一次口試,每位考生要在8道口試題中隨機抽出2道題回答,答對其中1題即為合格.
某位考生會答8題中的5道題,
∴這位考生及格的對立事件是抽出的兩道題都不會,
∴這位考生及格的概率p=1-$\frac{{C}_{3}^{2}}{{C}_{8}^{2}}$=1-$\frac{3}{28}$=$\frac{25}{28}$.
(2)一位考生及格的概率小于50%,
則他不及格的概率大于$\frac{1}{2}$,
設(shè)他最多會n道題,n≤8,
則$\frac{{C}_{8-n}^{2}}{{C}_{8}^{2}}$$>\frac{1}{2}$,
則${C}_{8-n}^{2}$=$\frac{(8-n)(7-n)}{2}$>14,即n2-15n+28>0,
解得n<$\frac{15-\sqrt{113}}{2}$或n>$\frac{15+\sqrt{113}}{2}$(舍),
∵n∈Z*,∴n的最大值為2.
∴他最多只會2道題.

點評 本題考查概率的求法,是中檔題,解題時要認(rèn)真審題,注意對立事件概率計算公式的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在等差數(shù)列{an}中,若a4+a6=10,Sn是數(shù)列{an}的前n項和,則S9的值為( 。
A.43B.44C.45D.46

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.6本不同的書按1:2:3分成三堆有多少種不同的分法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果S的值是( 。
A.2B.-$\frac{1}{2}$C.-3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}滿足a1=1,an+1=4an+1.
(Ⅰ)證明:{an+$\frac{1}{3}}\right.$}是等比數(shù)列,并求{an}的通項公式;
(Ⅱ)證明:$\frac{1}{a_1}$+$\frac{1}{a_2}$+…+$\frac{1}{a_n}$<$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)(2x-1)6=a6x6+a5x5+…+a1x+a0,則|a0|+|a1|+|a2|+…+|a6|=729.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.PM2.5是指懸浮在空氣中的空氣動力學(xué)當(dāng)量直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物,根據(jù)現(xiàn)行國家標(biāo)準(zhǔn)GB3095-2012,PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級;在35-75微克/立方米之間空氣質(zhì)量為二級;在75微克/立方米以上空氣質(zhì)量為超標(biāo),從某自然保護區(qū)2015年全年每天的PM2.5檢測值數(shù)據(jù)中隨機地抽取12天的數(shù)據(jù)作為樣本,監(jiān)測值頻數(shù)如莖葉圖所示(十位為莖,個位為葉):
(Ⅰ)求空氣質(zhì)量為超標(biāo)的數(shù)據(jù)的平均數(shù)與方差;
(Ⅱ)從空氣質(zhì)量為二級的數(shù)據(jù)中任取2個,求這2個數(shù)據(jù)的和小于100的概率;
(Ⅲ)以這12天的PM2.5日均值來估計2015年的空氣質(zhì)量情況,估計2015年(365天)大約有多少天的空氣質(zhì)量達到一級或二級.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.甲、乙兩地都位于長江下游,根據(jù)天氣預(yù)報的記錄知,一年中下雨天甲市占20%,乙市占18%,兩市同時下雨占12%.則甲市為雨天,乙市也為雨天的概率為( 。
A.0.6B.0.7C.0.8D.0.66

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知數(shù)列{an}滿足a1=2,an+1=$\sqrt{{{a}_{n}}^{2}-2{a}_{n}+2}$+1(n∈N*),數(shù)列{bn}滿足b1=a6400,bn=$\left\{\begin{array}{l}{-1+lo{g}_{3}_{n-1},n=2k}\\{{3}^{_{n-1}},n=2k+1}\end{array}\right.$(k∈N*),則數(shù)列{bn}的前n項和Sn的最大值為127.

查看答案和解析>>

同步練習(xí)冊答案