設f(x)=,g(x)=,下列四個結論

(1)f(2x)=2f(x)·g(x);

(2)g(2x)=2f(x)·g(x);

(3)f(2x)=[f(x)]2+[g(x)]2;

(4)g(2x)=[f(x)]2+[g(x)]2中恒成立的個數(shù)有

[  ]
A.

1個

B.

2個

C.

3個

D.

4個

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2007年上海市郊區(qū)部分區(qū)縣高三調研考試數(shù)學卷 題型:044

我們用min{S1,S2,…,Sn}和max{S1,S2,…,Sn}分別表示實數(shù)S1,S2,…,Sn中的最小者和最大者.

(1)設f(x)=min{sinx,cosx},g(x)=max{sinx,cosx},x∈[0,2π],函數(shù)f(x)的值域為A,函數(shù)g(x)的值域為B,求A∩B;

(2)數(shù)學課上老師提出了下面的問題:設a1,a2,an為實數(shù),x∈R,求函數(shù)(x1<x2<xn∈R=的最小值或最大值.為了方便探究,遵循從特殊到一般的原則,老師讓學生先解決兩個特例:求函數(shù)的最值.學生甲得出的結論是:[f(x)]min=min{f(-2),f(-1),f(1)},且f(x)無最大值.學生乙得出的結論是:[g(x)]max=max{g(-1),g(1),g(2)},且g(x)無最小值.請選擇兩個學生得出的結論中的一個,說明其成立的理由;

(3)試對老師提出的問題進行研究,寫出你所得到的結論并加以證明(如果結論是分類的,請選擇一種情況加以證明).

查看答案和解析>>

科目:高中數(shù)學 來源:浙江省桐鄉(xiāng)市高級中學2012屆高三10月月考數(shù)學文科試題 題型:022

設f(x)=,g(x)=asin+5-2a(a>0),若對于任意x1∈[0,1],總存在x0∈[0,1],使得g(x0)=f(x1)成立,則a的取值范圍為________.

查看答案和解析>>

科目:高中數(shù)學 來源:江西省新建二中2010屆高三上學期第一次月考數(shù)學理科試題 題型:044

設f(x)=x2-tx+3lnx,,且a、b為函數(shù)f(x)的極值點(0<ab)

(1)判斷函數(shù)g(x)在區(qū)間(-b,-a)上的單調性,并證明你的結論;

(2)若曲線g(x)在x=1處的切線斜率為-4,且方程g(x)-m=0(x≤0)有兩個不等的實根,求實數(shù)m的取值范圍.

(3)若f(x)在區(qū)間[3,+∞)上單調遞增,討論曲線yf(x)與x軸的交點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:江西省上高二中2011屆高三上學期第一次月考文科數(shù)學試題 題型:044

設f(x)=和g(x)=lg(x-a-1)(2a-x)(其中a<1)的定義域分別為A和B,若B是A成立的必要不充分條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆江西省高二下學期期中考試文科數(shù)學試卷(解析版) 題型:選擇題

f(x)= , g(x)= 則f(g())的值為(     )

A.1                B.0                C.-1              D.

 

查看答案和解析>>

同步練習冊答案