偶函數(shù)f(x)滿足f(x-1)=f(x+1),且在x∈[0,1]時,f(x)=x,則關于x的方程f(x)=(
1
10
x在x∈[0,4]上解的個數(shù)是
 
考點:抽象函數(shù)及其應用
專題:函數(shù)的性質(zhì)及應用
分析:根據(jù)已知條件推導函數(shù)f(x)的周期,再利用函數(shù)與方程思想把問題轉(zhuǎn)化,畫出函數(shù)的圖象,即可求解.
解答: 解:∵f(x-1)=f(x+1),
令x=x+1
∴f(x)=f(x+2),
∴函數(shù)f(x)是以2為周期的周期函數(shù).
∵x∈[0,1]時,f(x)=x,
又∵f(x)是偶函數(shù),
∴可得圖象如圖.
∴f(x)=(
1
10
)
x在x∈[0,4]上解的個數(shù)是4個.
故答案為:4
點評:本題考查函數(shù)的性質(zhì),體現(xiàn)了函數(shù)與方程思想,數(shù)形結(jié)合思想,轉(zhuǎn)化思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

橢圓C:
x2
4
+
y2
3
=1的左、右頂點分別為A1,A2,點P在C上且直線PA2的斜率的取值范圍是[-3,-1],那么直線PA1斜率的取值范圍是( 。
A、[
1
4
3
4
]
B、[
1
2
3
4
]
C、[
1
2
,1]
D、[
3
4
,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知條件p:x>1或x<-3,條件q:x>a,且q是p的充分而不必要條件,則a的取值范圍是( 。
A、a≥1B、a≤1
C、a≥-3D、a≤-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2+4x+2b-4a,當x∈(-∞,-2)∪(6,+∞)時,f(x)<0;當x∈(-2,6)時,f(x)>0.
(Ⅰ)求a、b的值;
(Ⅱ)若實數(shù)m>0,且f(x)>0的一個充分不必要條件是{x|m<x<2m+4},求m的取值范圍;
(Ⅲ)設F(x)=-kf(x)+4(k+1)x+2(6k-1),當k取何值時,對?x∈[0,2],函數(shù)F(x)的值恒為負數(shù)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

讀右側(cè)程序框圖,該程序運行后輸出的A值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log
1
2
(x2-2ax+3).
(1)若f(x)的定義域為R,求a的取值范圍;
(2)若f(-1)=-3,求f(x)單調(diào)區(qū)間;
(3)是否存在實數(shù)a,使f(x)在(-∞,2)上為增函數(shù)?若存在,求出a的范圍?若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法正確的是(  )
A、命題“若x2=1,則x=1”的否命題是“若x2=1,則x≠1”
B、“x=-1”是“x2-x-2=0”的必要不充分條件
C、“tanx=1”是“x=
π
4
”的充分不必要條件
D、命題“若x=y,則sinx=siny”的逆否命題是真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖,如果輸入的N值是6,那么輸出p的值是( 。
A、15B、105
C、120D、720

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中是假命題的是( 。
A、?a,b∈R+,lg(a+b)≠lga+lgb
B、?φ∈R,函數(shù)f(x)=sin(2x+φ)是偶函數(shù)
C、?α,β∈R,使得cos(α+β)=cosα+cosβ
D、?m∈R,使f(x)=(m-1)•xm2-4m+3是冪函數(shù),且在(0,+∞)上遞減

查看答案和解析>>

同步練習冊答案