【題目】如圖,在四棱錐中,底面為菱形,已知,

求證:平面平面ABCD;

求直線AE與平面CED的所成角的正弦值.

【答案】(1)見證明;(2)

【解析】

D,連結(jié)EO,推導(dǎo)出,,從而ABE,由此能證明平面平面ABCD;,,以O為坐標(biāo)原點(diǎn),分別以OE,OB,ODx軸,y軸,z軸,建立空間直角坐標(biāo)系,利用向量法能求出直線AE與平面CED的所成角的正弦值.

如圖,過D,連結(jié)EO

,,

,,

,,

由勾股定理逆定理得,

,ABEABE,

ABE

ABCD,平面平面ABCD

,,

如圖,以O為坐標(biāo)原點(diǎn),分別以OEOB,ODx軸,y軸,z軸,建立空間直角坐標(biāo)系,

由已知得0,,,0,,2,,

,,

設(shè)面CED的法向量y,,

,取,得0,,

設(shè)直線AE與平面CED所成角為,

直線AE與平面CED的所成角的正弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,.

1)若函數(shù)存在零點(diǎn),求的取值范圍;

2)已知函數(shù),若在區(qū)間上既有最大值又有最小值,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】自古以來“民以食為天”,餐飲業(yè)作為我國第三產(chǎn)業(yè)中的一個(gè)支柱產(chǎn)業(yè),一直在社會(huì)發(fā)展與人民生活中發(fā)揮著重要作用.某機(jī)構(gòu)統(tǒng)計(jì)了2010~2016年餐飲收入的情況,得到下面的條形圖,則下面結(jié)論中不正確的是( )

A. 2010~2016年全國餐飲收入逐年增加

B. 2016年全國餐飲收入比2010年翻了一番以上

C. 2010~2016年全國餐飲收入同比增量最多的是2015年

D. 2010~2016年全國餐飲收入同比增量超過3000億元的年份有3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱臺(tái)中,底面是菱形,,,平面

1)若點(diǎn)的中點(diǎn),求證://平面;

2)棱BC上是否存在一點(diǎn)E,使得二面角的余弦值為?若存在,求線段CE的長(zhǎng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩焦點(diǎn)在軸上,且短軸的兩個(gè)頂點(diǎn)與其中一個(gè)焦點(diǎn)的連線構(gòu)成斜邊為的等腰直角三角形.

(1)求橢圓的方程;

(2)動(dòng)直線交橢圓兩點(diǎn),試問:在坐標(biāo)平面上是否存在一個(gè)定點(diǎn),使得以線段為直徑的圓恒過點(diǎn)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】基于移動(dòng)互聯(lián)技術(shù)的共享單車被稱為“新四大發(fā)明”之一,短時(shí)間內(nèi)就風(fēng)靡全國,帶給人們新的出行體驗(yàn)某共享單車運(yùn)營公司的市場(chǎng)研究人員為了解公司的經(jīng)營狀況,對(duì)該公司最近六個(gè)月內(nèi)的市場(chǎng)占有率進(jìn)行了統(tǒng)計(jì),結(jié)果如下表:

月份

月份代碼x

1

2

3

4

5

6

市場(chǎng)占有率

11

13

16

15

20

21

請(qǐng)?jiān)诮o出的坐標(biāo)紙中作出散點(diǎn)圖,并用相關(guān)系數(shù)說明可用線性回歸模型擬合月度市場(chǎng)占有率y與月份代碼x之間的關(guān)系;

y關(guān)于x的線性回歸方程,并預(yù)測(cè)該公司2018年2月份的市場(chǎng)占有率;

根據(jù)調(diào)研數(shù)據(jù),公司決定再采購一批單車擴(kuò)大市場(chǎng),現(xiàn)有采購成本分別為1000元輛和800元輛的AB兩款車型報(bào)廢年限各不相同考慮到公司的經(jīng)濟(jì)效益,該公司決定先對(duì)兩款單車各100輛進(jìn)行科學(xué)模擬測(cè)試,得到兩款單車使用壽命頻數(shù)表如下:

報(bào)廢年限

車型

1年

2年

3年

4年

總計(jì)

A

10

30

40

20

100

B

15

40

35

10

100

經(jīng)測(cè)算,平均每輛單車每年可以為公司帶來收入500元不考慮除采購成本之外的其他成本,假設(shè)每輛單車的使用壽命都是整數(shù)年,且用頻率估計(jì)每輛單車使用壽命的概率,以每輛單車產(chǎn)生利潤(rùn)的期望值為決策依據(jù)如果你是該公司的負(fù)責(zé)人,你會(huì)選擇采購哪款車型?

參考數(shù)據(jù):,,

參考公式:相關(guān)系數(shù),

回歸直線方程為其中:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四邊形為某橢圓的內(nèi)接矩形的充要條件是:它的四個(gè)頂點(diǎn)是橢圓的同心圓與它的四個(gè)交點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,已知直線的參數(shù)方程是 (m>0,t為參數(shù)),曲線的極坐標(biāo)方程為

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)若直線軸交于點(diǎn),與曲線交于點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)將甲、乙兩個(gè)學(xué)生在高二的6次數(shù)學(xué)測(cè)試的成績(jī)(百分制)制成如圖所示的莖葉圖,進(jìn)入高三后,由于改進(jìn)了學(xué)習(xí)方法,甲、乙這兩個(gè)學(xué)生的考試成績(jī)預(yù)計(jì)同時(shí)有了大的提升:若甲(乙)的高二任意一次考試成績(jī)?yōu)?/span>,則甲(乙)的高三對(duì)應(yīng)的考試成績(jī)預(yù)計(jì)為.

(1)試預(yù)測(cè):高三6次測(cè)試后,甲、乙兩個(gè)學(xué)生的平均成績(jī)分別為多少?誰的成績(jī)更穩(wěn)定?

(2)若已知甲、乙兩個(gè)學(xué)生的高二6次考試成績(jī)分別由低到高進(jìn)步的,定義為高三的任意一次考試后甲、乙兩個(gè)學(xué)生的當(dāng)次成績(jī)之差的絕對(duì)值,求的平均值.

查看答案和解析>>

同步練習(xí)冊(cè)答案