3.設(shè)a=0.70.4,b=0.40.7,c=0.40.4,則a,b,c的大小關(guān)系為( 。
A.b<a<cB.a<c<bC.b<c<aD.c<b<a

分析 利用指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性即可得出.

解答 解:∵a=0.70.4>0.40.4=c,b=0.40.7<c=0.40.4,
∴a>c>b.
故選:C.

點評 本題考查了指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.直線ax+2by+2=0與圓x2+y2=2相切,切點在第一象限內(nèi),則$\frac{1}{a^2}+\frac{1}{b^2}$的最小值為$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)$f(x)=\sqrt{x}sinx$,則f'(π)=( 。
A.$\sqrt{π}$B.$\frac{{\sqrt{π}}}{2π}$C.$-\sqrt{π}$D.$\frac{{\sqrt{2π}}}{2π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.下列集合中,不同于另外三個集合的是③.
①{x|x=1}   ②{y|(y-1)2=0}      ③{x=1}    ④{1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=x2-2x,設(shè)$g(x)=\frac{1}{x}•f({x+1})$.
(1)求函數(shù)g(x)的表達(dá)式,并求函數(shù)g(x)的定義域;
(2)判斷函數(shù)g(x)的奇偶性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\frac{\sqrt{6}}{3}$,坐標(biāo)原點O到過點A(0,-b)和B(a,0)的直線的距離為$\frac{\sqrt{3}}{2}$.又直線y=kx+m(k≠0,m≠0)與該橢圓交于不同的兩點C,D.且C,D兩點都在以A為圓心的同一個圓上.
(1)求橢圓的方程;
(2)當(dāng)k=$\frac{\sqrt{6}}{3}$時,求m的值,以及此時△ACD面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列五個命題中正確命題的個數(shù)是( 。
(1)對于命題p:?x∈R,使得x2+x+1<0,則¬p:?x∈R,均有x2+x+1<0;
(2)m=3是直線(m+3)x+my-2=0與直線mx-6y+5=0互相垂直的充要條件;
(3)已知回歸直線的斜率的估計值為1.23,樣本點的中心為(4,5),則回歸直線方程為$\widehaty=1.23x+0.08$;
(4)已知正態(tài)總體落在區(qū)間(0.7,+∞)的概率是0.5,則相應(yīng)的正態(tài)曲線f(x)在x=0.7時,達(dá)到最高點;
(5)曲線y=x2與y=x所圍成的圖形的面積是$S=\int_0^1{({x-{x^2}})dx}$.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.用秦九韶算法計算多項式f(x)=2x4-x3+3x2+7,在求x=3時對應(yīng)的值時,v3的值為54.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=-x3+3x+2的單調(diào)遞增區(qū)間是( 。
A.(1,+∞)B.(-∞,-1)C.(-1,1)D.(-2,2)

查看答案和解析>>

同步練習(xí)冊答案