已知最小正周期為2的函數(shù)y=f(x),當(dāng)x∈[-1,1]時,f(x)=x2,則函數(shù)y=f(x)(x∈R)的圖象與y=|log5x|的圖象的交點個數(shù)為______.
當(dāng)x∈[-1,1]時,f(x)=x2,∴f(x)∈[0,1];又函數(shù)y=f(x)是最小正周期為2的函數(shù),當(dāng)x∈R時,f(x)∈[0,1].
y=|log5x|的圖象即把函數(shù)y=log5x的圖象在x軸下方的對稱的反折到x軸的上方,且x∈(0,1]時,函數(shù)單調(diào)遞減,y∈[0,+∞);
x∈(1,+∞)時,函數(shù)y=log5x單調(diào)遞增,y∈(0,+∞),且log55=1.
據(jù)以上畫出圖象如圖所示:
根據(jù)以上結(jié)論即可得到:函數(shù)y=f(x)(x∈R)的圖象與y=|log5x|的圖象的交點個數(shù)為5.
故答案為5.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=
mx+n
1+x2
是定義在[-
1
2
1
2
]上是奇函數(shù),且f(-
1
4
)=
8
17

(1)確定函數(shù)f(x)解析式
(2)用定義證明函數(shù)f(x)在[
1
2
,
1
2
]上是減函數(shù)
(3)若實數(shù)t滿足f(
t
3
)+f(t+1)<0,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x2-2ax-(2a+2)
(Ⅰ)解關(guān)于x的不等式f(x)>x;
(Ⅱ)若f(x)+3≥0在區(qū)間(-1,+∞)上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=
ax2-(1+a)x+1

(1)當(dāng)a=0時,求證函數(shù)f(x)在它的定義域上單調(diào)遞減
(2)是否存在實數(shù)a使得區(qū)間[-1,1]上一切x都滿足f(x)≤
3
,若存在,求實數(shù)a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x|x-a|(x∈R).
(1)判斷f(x)的奇偶性,并證明;
(2)求實數(shù)a的取值范圍,使函數(shù)g(x)=f(x)+2x+1在R上恒為增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)一個矩形的面積為8,如果此矩形的對角線長為y,一邊長為x,試把y表示成x的函數(shù).
(2)證明:函數(shù)f(x)=x2+1是偶函數(shù),且在[0,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知以T=4為周期的函數(shù)f(x)=
m
1-x2
,x∈(-1,1]
1-|x-2|,x∈(1,3]
,其中m>0.若方程3f(x)=x恰有5個實數(shù)解,則m的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)f(x)為奇函數(shù),g(x)為偶函數(shù),若f(x)-g(x)=(
1
2
x,則f(1)-g(-2)=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)=
4x+1
2x
的奇偶性( 。
A.既奇又偶B.非奇非偶C.奇函數(shù)D.偶函數(shù)

查看答案和解析>>

同步練習(xí)冊答案