12.已知正項(xiàng)數(shù)列{an}的首項(xiàng)a1=1,且對一切的正整數(shù)n,均有:(n+1)an+1-nan2+(n+1)anan+1-nan=0,則數(shù)
列{an}的通項(xiàng)公式an=$\frac{1}{n}$.

分析 由$(n+1){a_{n+1}}-na_n^2+(n+1){a_n}{a_{n+1}}-n{a_n}=0$,可得$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n}{n+1}$,再利用“累乘求積”即可得出.

解答 解:由$(n+1){a_{n+1}}-na_n^2+(n+1){a_n}{a_{n+1}}-n{a_n}=0$,
∴(n+1)an+1(1+an)-nan(1+an)=0,
∴(1+an)[(n+1)an+1-nan]=0,
∴$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n}{n+1}$,
則$\frac{a_n}{{{a_{n-1}}}}•\frac{{{a_{n-1}}}}{{{a_{n-2}}}}…\frac{a_2}{a_1}=\frac{n-1}{n}•\frac{n-2}{n-1}…\frac{1}{2}$,
∴an=$\frac{1}{n}$.
故答案為:$\frac{1}{n}$.

點(diǎn)評 本題考查了數(shù)列遞推關(guān)系、“累乘求積”方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若直線ax+2y+4=0與直線x+y-2=0互相垂直,那么a的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知雙曲線$\frac{x^2}{4}-\frac{y^2}{b^2}=1(b>0)$的一條漸近線方程為3x+2y=0,則b等于3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=(sinx+cosx)2+2cos2x.
(Ⅰ)求f(x)最小正周期;
(Ⅱ)求f(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知a>0且a≠1,函數(shù)$f(x)=\left\{{\begin{array}{l}{{{log}_{\frac{1}{3}}}x,}&{x>0}\\{{a^x}+b,}&{x≤0}\end{array}}\right.$滿足f(0)=2,f(-1)=3,則f(f(-3))=( 。
A.-3B.-2C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)a>0,已知函數(shù)$f(x)=\sqrt{x}-ln(x+a)$(x>0).
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)試判斷函數(shù)f(x)在(0,+∞)上是否有兩個(gè)零點(diǎn),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知向量$\vec a=(-1,\;1)$,$\vec b=(n,\;2)$,若$\vec a•\vec b=\frac{5}{3}$,則n=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè) $a=ln\frac{1}{2},b={2^{\frac{1}{e}}},c={e^{-2}}$,則( 。
A.c<b<aB.c<a<bC.a<c<bD.a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an} 是各項(xiàng)均為正數(shù)的等比數(shù)列,且a2=1,a3+a4=6
(Ⅰ)求數(shù)列{an} 的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{an-n} 的前n 項(xiàng)和為Sn,比較S4 和S5 的大小,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案