(本小題滿分12分)已知函數(shù) ,當(dāng)時(shí)取得最小值-4.

(1)求函數(shù)的解析式;

(2)若等差數(shù)列前n項(xiàng)和為,且,求數(shù)列的前n項(xiàng)和.

 

【答案】

(1);(2).

【解析】

試題分析: 本題是三角函數(shù)與數(shù)列的綜合題目,考查三角函數(shù)的最值、解析式,數(shù)列的通項(xiàng)公式、求和公式等基礎(chǔ)知識(shí),考查數(shù)形結(jié)合思想、轉(zhuǎn)化思想和計(jì)算能力.第一問,根據(jù)已知條件,當(dāng)時(shí)取得最小值-4,所以數(shù)形結(jié)合將坐標(biāo)代入解出的值,得到函數(shù)解析式;第二問,根據(jù)第一問的解析式,先求出的值,利用等差數(shù)列的通項(xiàng)公式求出數(shù)列的首項(xiàng)和公差,并求出數(shù)列的前n項(xiàng)和,用裂項(xiàng)相消法求數(shù)列的前n項(xiàng)和.

試題解析:(1)由題意時(shí)取得最小值-4,

,

又因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014033004310431075337/SYS201403300431294045300539_DA.files/image015.png">,所以    4分

(2)因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014033004310431075337/SYS201403300431294045300539_DA.files/image018.png">,,所以

設(shè)等差數(shù)列公差為,則,      8分

          12分

考點(diǎn):1.三角函數(shù)的最值;2.等差數(shù)列的通項(xiàng)公式;3.等差數(shù)列的前n項(xiàng)和公式;4.裂項(xiàng)相消法求和.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過點(diǎn)M作MM1丄y軸于M1,過N作NN1⊥x軸于點(diǎn)N1,
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤(rùn)與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬元.

查看答案和解析>>

同步練習(xí)冊(cè)答案