4.在邊長(zhǎng)為1的正方形ABCD中,向量$\overrightarrow{DE}$=$\frac{1}{2}$$\overrightarrow{DC}$,$\overrightarrow{BF}$=$\frac{1}{3}$$\overrightarrow{BC}$,則向量$\overrightarrow{AE}$,$\overrightarrow{AF}$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

分析 以A為坐標(biāo)原點(diǎn),以AB為x軸,以AD為x軸,建立直角坐標(biāo)系,根據(jù)向量的夾角的公式計(jì)算即可

解答 解:設(shè)向量$\overrightarrow{AE}$,$\overrightarrow{AF}$的夾角為θ,
以A為坐標(biāo)原點(diǎn),以AB為x軸,以AD為x軸,建立直角坐標(biāo)系,
∴A(0,0),B(1.0),C(1,1),D(0,1),
∵向量$\overrightarrow{DE}$=$\frac{1}{2}$$\overrightarrow{DC}$,$\overrightarrow{BF}$=$\frac{1}{3}$$\overrightarrow{BC}$,
∴E($\frac{1}{2}$,1),F(xiàn)(1,$\frac{1}{3}$),
∴$\overrightarrow{AE}$=($\frac{1}{2}$,1),$\overrightarrow{AF}$=(1,$\frac{1}{3}$),
∴|$\overrightarrow{AE}$|=$\sqrt{\frac{5}{4}}$,$\overrightarrow{AF}$=$\sqrt{\frac{10}{9}}$,$\overrightarrow{AE}$•$\overrightarrow{AF}$=$\frac{1}{2}$+$\frac{1}{3}$=$\frac{5}{6}$,
∴cosθ=$\frac{\overrightarrow{AE}•\overrightarrow{AF}}{|\overrightarrow{AE}|•|\overrightarrow{AF}|}$=$\frac{\frac{5}{6}}{\sqrt{\frac{5}{4}×\frac{10}{9}}}$=$\frac{\sqrt{2}}{2}$,
∴θ=$\frac{π}{4}$,
故選:B

點(diǎn)評(píng) 本題考查了向量的坐標(biāo)運(yùn)算和向量的夾角公式,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.請(qǐng)寫出“好貨不便宜”的等價(jià)命題:便宜沒好貨.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=cos2x+2sinx
(Ⅰ)求f(-$\frac{π}{6}$)的值;
(Ⅱ)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)f(x)=2sin(ωx-$\frac{π}{6}$)-1(ω>0)最小正周期是π,則函數(shù)f(x)的單調(diào)遞增區(qū)間是[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知集合U={1,2,3,4,5,6},M={1,5},P={2,4},則下列結(jié)論正確的是( 。
A.1∈∁U(M∪P)B.2∈∁U(M∪P)C.3∈∁U(M∪P)D.6∉∁U(M∪P)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知△ABC中,點(diǎn)A(-2,0),B(2,0),C(x,1)
(i)若∠ACB是直角,則x=$±\sqrt{3}$
(ii)若△ABC是銳角三角形,則x的取值范圍是(-2,-$\sqrt{3}$)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C:$\left\{\begin{array}{l}{x=2cosφ}\\{y=sinφ}\end{array}\right.$(φ為參數(shù)),A,B是C上的動(dòng)點(diǎn),且滿足OA⊥OB(O為坐標(biāo)原點(diǎn)),以原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)D的極坐標(biāo)為(-4,$\frac{π}{3}$).
(1)求線段AD的中點(diǎn)M的軌跡E的普通方程;
(2)利用橢圓C的極坐標(biāo)方程證明$\frac{1}{|OA{|}^{2}}$+$\frac{1}{|OB{|}^{2}}$為定值,并求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)函數(shù)f(x)=cosωx(ω>0),將y=f(x)的圖象向右平移$\frac{π}{4}$個(gè)單位長(zhǎng)度后,所得的圖象與原圖象重合,則ω的最小值等于( 。
A.$\frac{1}{2}$B.2C.8D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知$tanα=\frac{1}{7},sinβ=\frac{{\sqrt{10}}}{10}$分別在下列條件下求α+2β的值:
(1)$α∈({0,\frac{π}{2}}),β∈({0,\frac{π}{2}})$
(2)$α∈({-π,0}),β∈({0,\frac{π}{2}})$.

查看答案和解析>>

同步練習(xí)冊(cè)答案