6.(1)(2$\frac{4}{5}$)0+2-2×(2$\frac{1}{4}$)${\;}^{-\frac{1}{2}}}$-($\frac{8}{27}$)${\;}^{\frac{1}{3}}}$;
(2)($\frac{25}{16}$)0.5+($\frac{27}{8}$)${\;}^{-\frac{1}{3}}}$-2π0+4${\;}^{{{log}_4}5}}$-lne5+lg200-lg2.

分析 (1)根據(jù)指數(shù)冪的運算性質(zhì)計算即可,
(2)根據(jù)對數(shù)的運算性質(zhì)計算即可.

解答 解:(1)${(2\frac{4}{5})^0}+{2^{-2}}×{(2\frac{1}{4})^{-\frac{1}{2}}}-{(\frac{8}{27})^{\frac{1}{3}}}=1+\frac{1}{4}×{[{{{(\frac{3}{2})}^2}}]^{-\frac{1}{2}}}-{[{{{(\frac{2}{3})}^3}}]^{\frac{1}{3}}}=1+\frac{1}{4}×\frac{2}{3}-\frac{2}{3}=\frac{1}{2}$.
(2)原式=${(\frac{5}{4})^{2×0.5}}+{(\frac{3}{2})^{3×(-\frac{1}{3})}}-2+5-5+2+lg2-lg2=\frac{5}{4}+\frac{2}{3}=\frac{23}{12}$.

點評 本題考查了對數(shù)的運算性質(zhì)和指數(shù)冪的運算性質(zhì),屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

16.已知對任意x∈R,不等式2${\;}^{-{x}^{2}-x}$>($\frac{1}{2}$)${\;}^{2{x}^{2}-mx+m+4}$恒成立.求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知集合A={x|1≤x≤2},集合B={x|x≤a},若A∩B≠∅,則實數(shù)a的取值范圍是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.計算81+891+8991+89991+…+8$\underbrace{99…99}_{n-1個9}$1=10n+1-9n-10.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.從k2+1(k∈N)開始,連續(xù)2k+1個自然數(shù)的和等于(  )
A.(k+1)3B.(k+1)3+k3C.(k-1)3+k3D.(2k+1)(k+1)3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.化簡 (0.25)-2+8${\;}^{\frac{2}{3}}$-lg25-2lg2的結(jié)果為( 。
A.18B.20C.22D.24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.函數(shù)f(x)=$\frac{ax+b}{1+{x}^{2}}$是定義在區(qū)間(-1,1)上的奇函數(shù),且f(2)=$\frac{2}{5}$,
(1)確定函數(shù)f(x)的解析式;
(2)用定義法證明f(x)在區(qū)間(-1,1)上是增函數(shù);
(3)解不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.若向量$\overrightarrow{a}$=(1,1,2),$\overrightarrow$=(2,-1,2),則cos<$\overrightarrow{a}$,$\overrightarrow$>=(  )
A.3B.$\frac{5\sqrt{6}}{18}$C.$\frac{2}{55}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.過P(2,0)且與直線x-2y+3=0平行的直線方程為2y-x+2=0.

查看答案和解析>>

同步練習冊答案