在正四棱錐SABCD中,O為頂點在底面上的射影,P為側(cè)棱SD的中點,且SOOD,則直線BC與平面PAC所成的角是________

 

30°

【解析】如圖,以O為原點建立空間直角坐標系Oxyz.

設(shè)ODSOOAOBOCa.A(a,0,0),B(0,a,0),C(a,0,0),P.

(2a,0,0),,

(a,a,0),設(shè)平面PAC的一個法向量為n,設(shè)n(xy,z)

解得可取n(0,1,1),

cosn〉=,

,n〉=60°

直線BC與平面PAC所成的角為90°60°30°.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練選修4-1練習(xí)卷(解析版) 題型:填空題

如圖所示,過O外一點P作一條直線與O交于A,B兩點.已知PA2,過點PO的切線長PT4,則弦AB的長為________

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-6-3練習(xí)卷(解析版) 題型:選擇題

在拋物線y2x2上有一點P,它到A(1,3)的距離與它到焦點的距離之和最小,則點P的坐標是(  )

A(2,1) B(1,2) C(2,1) D(1,2)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-6-1練習(xí)卷(解析版) 題型:解答題

已知點A(3,0),B(3,0),動點P滿足|PA|2|PB|.

(1)若點P的軌跡為曲線C,求此曲線的方程;

(2)若點Q在直線l1xy30上,直線l2經(jīng)過點Q且與曲線C只有一個公共點M,求|QM|的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-6-1練習(xí)卷(解析版) 題型:選擇題

垂直于直線yx1且與圓x2y21相切于第一象限的直線方程(  )

Axy0 Bxy10

Cxy10 Dxy0

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-5-3練習(xí)卷(解析版) 題型:選擇題

如圖,在正方體ABCDA1B1C1D1中,棱長為aM,N分別為A1BAC上的點,A1MAN,則MN與平面BB1C1C的位置關(guān)系是(  )

A.相交 B.平行 C.垂直 D.不能確定

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-5-2練習(xí)卷(解析版) 題型:填空題

如圖,PA⊥⊙O所在的平面,ABO的直徑,CO上的一點,E,F分別是點APBPC上的射影,給出下列結(jié)論:

AFPB;EFPBAFBC;AE平面PBC.其中正確命題的序號是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-5-1練習(xí)卷(解析版) 題型:選擇題

在一個幾何體的三視圖中,正()視圖和俯視圖分別如圖所示,則相應(yīng)的側(cè)()視圖可以為 (  )

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-3-1練習(xí)卷(解析版) 題型:選擇題

將函數(shù)ysin(2xφ)的圖象沿x軸向左平移個單位后,得到一個偶函數(shù)的圖象,則φ的一個可能取值為(  )

A. B. C0 D.-

 

查看答案和解析>>

同步練習(xí)冊答案