若集合A={x|x2-[2a+(a2+1)]x+2a(a2+1)≤0},B={x|(x-2[x-(3a+1)]≤0},當(dāng)實(shí)數(shù)a為何值時,A⊆B.
考點(diǎn):集合的包含關(guān)系判斷及應(yīng)用
專題:集合
分析:本題是一元二次不等式和集合包含關(guān)系結(jié)合的題目,需要分類討論,求出a的取值范圍.
解答: 解:∵集合A={x|x2-[2a+(a2+1)]x+2a(a2+1)≤0},
∴A={x|2a≤x≤a2+1},
∵B={x|(x-2[x-(3a+1)]≤0},
∴B={x|x≥6a+2},
若A⊆B.只需滿足,6a+2≤2a
即a≤-
1
2
點(diǎn)評:本題主要考查集合的基本運(yùn)算,屬于基礎(chǔ)題.要正確判斷兩個集合間的關(guān)系,必須對集合的相關(guān)概念有深刻的理解,善于抓住代表元素,認(rèn)清集合的特征
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某四棱錐的三視圖如圖所示,該四棱錐的體積為( 。
A、8B、16C、24D、32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“a=±2”是“直線ax-4y+1=0與直線ax+y+1=0互相垂直”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市組織一次高三調(diào)研考試,考試后統(tǒng)計的數(shù)學(xué)成績服從正態(tài)分布,其密度函數(shù)f(x)=
1
•20
e-
(x-90)2
400
(x∈(-∞,+∞)),則下列命題不正確的是(  )
A、該市這次考試的數(shù)學(xué)平均成績?yōu)?0分
B、分?jǐn)?shù)在120分以上的人數(shù)與分?jǐn)?shù)在60分以下的人數(shù)相同
C、分?jǐn)?shù)在110分以上的人數(shù)與分?jǐn)?shù)在50分以下的人數(shù)相同
D、該市這次考試的數(shù)學(xué)標(biāo)準(zhǔn)差為20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={(x,y)|y=x2+2x},集合B={(x,y)|y=x+a},且∅?A∩B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若過點(diǎn)A(0,1)和B(4,m),并且與x軸相切的圓只有一個,求實(shí)數(shù)m的值和這圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-3x+2=0},C={x|x2-x+2m=0},若A∩C=C,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的短軸長為單位圓C2:x2+y2=1的直徑,且橢圓的離心率為
6
3

(1)求橢圓的方程;
(2)過橢圓短軸的上頂點(diǎn)B1作直線分別與單位圓C2和橢圓C1交于A,B兩點(diǎn)(A,B兩點(diǎn)均在y軸的右側(cè)),設(shè)B2為橢圓的短軸的下頂點(diǎn),求∠AB2B的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,如果你在海邊沿著海岸線直線前行,請?jiān)O(shè)計一種測量海中兩個小島A,B之間距離的方法.

查看答案和解析>>

同步練習(xí)冊答案