11.已知扇形的周長是5cm,面積是$\frac{3}{2}$cm2,則扇形的中心角的弧度數(shù)是( 。
A.3B.$\frac{4}{3}$C.$3或\frac{4}{3}$D.2

分析 設扇形的半徑為r,弧長為 l,然后,建立等式,求解l、r,最后,求解圓心角即可.

解答 解:設扇形的半徑為r,弧長為 l,則:
l+2r=5,S=$\frac{1}{2}$lr=$\frac{3}{2}$,
∴解得r=1,l=3或r=$\frac{3}{2}$,l=2,
∴α=$\frac{l}{r}$=3或$\frac{4}{3}$,
故選:C.

點評 本題主要考查扇形面積公式,弧度與角度的互化,弧長公式,考查計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.已知集合A={(x,y)|y=x+1,0≤x≤1},集合B={(x,y)|y=2x,0≤x≤10},則集合A∩B=( 。
A.{1}B.{(1,3)}C.{(1,2)}D.{2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=alnx+x2-1(a∈R).
(1)若a=-1,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若f(x)≥b(x-1)(b∈R)對任意x∈[$\frac{1}{e}$,+∞)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知雙曲線${x}^{2}-\frac{{y}^{2}}{3}=1$的離心率為$\frac{m}{2}$,且拋物線y2=mx的焦點為F,點P(3,y0)(y0>0)在此拋物線上,M為線段PF的中點,則點M到該拋物線的準線的距離為( 。
A.3B.2C.$\frac{5}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=mex-lnx-1.
(1)當m=1,x∈[1,+∞)時,求y=f(x)的值域;
(2)當m≥1時,證明:f(x)>1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.在平面直角坐標系中,方程3x-2y+1=0所對應的直線經(jīng)過伸縮變換$\left\{\begin{array}{l}x'=\frac{1}{3}x\\ y'=2y\end{array}\right.$后的直線方程為( 。
A.3x'-4y'+1=0B.3x'+y'-1=0C.9x'-y'+1=0D.x'-4y'+1=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=x2-2x+alnx(a>0)
(Ⅰ)當a=1時,試求函數(shù)圖象過點(1,f(1))的切線方程;
(Ⅱ)當a=2時,若關于x的方程f(x)=3x+b有唯一實數(shù)解,試求實數(shù)b的取值范圍;
(Ⅲ)若函數(shù)f(x)有兩個極值點x1、x2(x1<x2),且不等式f(x1)>mx2恒成立,試求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.某高中學校為了了解在校學生的身體健康狀況,從全校學生中,隨機抽取12名進行體質(zhì)健康測試,測試成績(百分制)以莖葉圖形式表示如圖:
根據(jù)學生體質(zhì)健康標準,成績不低于76的為優(yōu)良.
(1)將頻率視為概率,根據(jù)樣本估計總體的思想,在該校學生中任選3人進行體質(zhì)健康測試,求至少有1人成績是“優(yōu)良”的概率;
(2)從抽取的12人中隨機選取3人,記ξ表示成績“優(yōu)良”的學生人數(shù),求ξ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ均為正常數(shù))的最小正周期為π,當x=$\frac{π}{6}$時,函數(shù)f(x)取得最大值,則下列結(jié)論正確的是( 。
A.f(2)<f(-2)<f(0)B.f(0)<f(2)<f(-2)C.f(-2)<f(0)<f(2)D.f(2)<f(0)<f(-2)

查看答案和解析>>

同步練習冊答案