(本題10分) 為了讓學(xué)生了解環(huán)保知識,增強(qiáng)環(huán)保意識,某中學(xué)舉行了一次“環(huán)保知識競賽”,共有900名學(xué)生參加了這次競賽.為了解本次競賽成績情況,從中抽取了部分學(xué)生的成績(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì).請你根據(jù)尚未完成并有局部污損的頻率分布表和頻率分布直方圖,解答下列問題:

分組

頻數(shù)

頻率

50.5~60.5

4

0.08

60.5~70.5

 

0.16

70.5~80.5

10

 

80.5~90.5

16

0.32

90.5~100.5

 

 

合計(jì)

50

 

(Ⅰ)填充頻率分布表的空格(將答案直接填在表格內(nèi));

(Ⅱ)補(bǔ)全頻率分布直方圖;

(Ⅲ)學(xué)校決定成績在75.5~85.5分的學(xué)生為二等獎,

問該校獲得二等獎的學(xué)生約為多少人?

 

【答案】

【解析】解:(1)  ——3分

分組

頻數(shù)

頻率

50.5~60.5

4

0.08

60.5~70.5

8

0.16

70.5~80.5

10

0.20

80.5~90.5

16

0.32

90.5~100.5

12

0.24

合計(jì)

50

1.00

 

 

 

 

 

 

 

 

(2)頻率分布直方圖如右上所示:——3分

(3)成績在75.5~80.5分的學(xué)生占70.5~80.5分的學(xué)生的,因?yàn)槌煽冊?0.5~80.5分的學(xué)生頻率為0.2 ,所以成績在76.5~80.5分的學(xué)生頻率為0.1 ,

成績在80.5~85.5分的學(xué)生占80.5~90.5分的學(xué)生的,因?yàn)槌煽冊?0.5~90.5分的學(xué)生頻率為0.32 ,所以成績在80.5~85.5分的學(xué)生頻率為0.16 

所以成績在76.5~85.5分的學(xué)生頻率為0.26,   ——2分

由于有900名學(xué)生參加了這次競賽,所以該校獲得二等獎的學(xué)生約為

0.26´900=234(人)      ——2分

 

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分16分,第(1)小題6分,第(2)小題10分)

為了讓更多的人參與2010年在上海舉辦的“世博會”,上海某旅游公司面向國內(nèi)外發(fā)行總量為2000萬張的旅游優(yōu)惠卡,其中向境外人士發(fā)行的是世博金卡(簡稱金卡),向境內(nèi)人士發(fā)行的是世博銀卡(簡稱銀卡)。現(xiàn)有一個由36名游客組成的旅游團(tuán)到上海參觀旅游,其中是境外游客,其余是境內(nèi)游客。在境外游客中有持金卡,在境內(nèi)游客中有持銀卡。.    

(1)在該團(tuán)中隨機(jī)采訪3名游客,求恰有1人持金卡且持銀卡者少于2人的概率;

(2)在該團(tuán)的境內(nèi)游客中隨機(jī)采訪3名游客,設(shè)其中持銀卡人數(shù)為隨機(jī)變量,求的分布列及數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年黑龍江省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題12分)為了研究化肥對小麥產(chǎn)量的影響,某科學(xué)家將一片土地劃分成200個的小塊,并在100個小塊上施用新化肥,留下100個條件大體相當(dāng)?shù)男K不施用新化肥.下表1和表2分別是施用新化肥和不施用新化肥的小麥產(chǎn)量頻數(shù)分布表(小麥產(chǎn)量單位:kg)

表1:施用新化肥小麥產(chǎn)量頻數(shù)分布表

小麥產(chǎn)量

頻數(shù)

10

35

40

10

5

表2:不施用新化肥小麥產(chǎn)量頻數(shù)分布表

小麥產(chǎn)量

頻數(shù)

15

50

30

5

(10)      完成下面頻率分布直方圖;

(2)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表,據(jù)此估計(jì)施用化肥和不施用化肥的一小塊土地的小麥平均產(chǎn)量;

(3)完成下面2×2列聯(lián)表,并回答能否有99.5%的把握認(rèn)為“施用新化肥和不施用新化肥的小麥產(chǎn)量有差異”

表3:

 

小麥產(chǎn)量小于20kg

小麥產(chǎn)量不小于20kg

合計(jì)

施用新化肥

 

不施用新化肥

 

合計(jì)

 

 

 

附:

 

0.050

0.010

0.005

0.001

3.841

6.635

7.879

10.828

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市高二第二學(xué)期階段質(zhì)量檢測數(shù)學(xué)試題 題型:解答題

(本題滿分16分,第(1)小題6分,第(2)小題10分)

如圖,彎曲的河流是近似的拋物線,公路恰好是的準(zhǔn)線,上的點(diǎn)的距離最近,且為千米,城鎮(zhèn)位于點(diǎn)的北偏東處,千米,現(xiàn)要在河岸邊的某處修建一座碼頭,并修建兩條公路,一條連接城鎮(zhèn),一條垂直連接公路以便建立水陸交通網(wǎng).

(1)建立適當(dāng)?shù)淖鴺?biāo)系,求拋物線的方程;

(2)為了降低修路成本,必須使修建的兩條公路總長最小,請給出修建方案(作出圖形,在圖中標(biāo)出此時碼頭的位置),并求公路總長的最小值(精確到0.001千米)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市高一上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

(本題滿分10分)甲乙兩地相距 km,汽車從甲地勻速行駛到乙地,速度不得超過 km/h,已知汽車每小時的運(yùn)輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度 km/h的平方成正比,比例系數(shù)為,固定部分為元.

(1)把全程運(yùn)輸成本(元)表示為速度(千米/時)的函數(shù),并指出這個函數(shù)的定義域;

(2)為了使全程運(yùn)輸成本最小,汽車應(yīng)以多大速度行駛?

 

查看答案和解析>>

同步練習(xí)冊答案