14.設(shè)拋物線C:y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)M在C上,|MF|=5,若以MF為直徑的圓過點(diǎn)(0,2),則C的方程為y2=4x或y2=16x.

分析 求出M(5-$\frac{p}{2}$,4),代入拋物線方程得p2-10p+16=0,求出p,即可得出結(jié)論.

解答 解:∵拋物線C方程為y2=2px(p>0),∴焦點(diǎn)F($\frac{p}{2}$,0),
設(shè)M(x,y),由拋物線性質(zhì)|MF|=x+$\frac{p}{2}$=5,可得x=5-$\frac{p}{2}$,
因?yàn)閳A心是MF的中點(diǎn),所以根據(jù)中點(diǎn)坐標(biāo)公式可得,圓心橫坐標(biāo)為$\frac{5-\frac{p}{2}+\frac{p}{2}}{2}$=$\frac{5}{2}$,
由已知圓半徑也為$\frac{5}{2}$,據(jù)此可知該圓與y軸相切于點(diǎn)(0,2),故圓心縱坐標(biāo)為2,則M點(diǎn)縱坐標(biāo)為4,
即M(5-$\frac{p}{2}$,4),代入拋物線方程得p2-10p+16=0,所以p=2或p=8.
所以拋物線C的方程為y2=4x或y2=16x.
故答案為y2=4x或y2=16x.

點(diǎn)評(píng) 本題給出拋物線一條長(zhǎng)度為5的焦半徑MF,以MF為直徑的圓交拋物線于點(diǎn)(0,2),求拋物線的方程,著重考查了拋物線的定義與簡(jiǎn)單幾何性質(zhì)、圓的性質(zhì)和解直角三角形等知識(shí),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.點(diǎn)M是拋物線y2=x上的點(diǎn),點(diǎn)N是圓C:(x-3)2+y2=1上的點(diǎn),則|MN|的最小值是( 。
A.$\frac{\sqrt{11}}{2}$-1B.$\frac{\sqrt{10}}{2}$-1C.2D.$\sqrt{3}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為43,則判斷框內(nèi)應(yīng)填入的條件是(  )
A.z≤42?B.z≤20?C.z≤50?D.z≤52?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知$\overrightarrow p=({2,\sqrt{3}}),\overrightarrow q=({{{cos}^2}\frac{A}{2},sin({B+C})})$,其中A,B,C是△ABC的內(nèi)角.
(1)當(dāng)$A=\frac{π}{3}$時(shí),求$|{\overrightarrow q}|$的值;
(2)若$C=\frac{5π}{12},AC=2\sqrt{3}$,當(dāng)$\overrightarrow p,\overrightarrow q$取最大值是,求B的大小及BC邊的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知長(zhǎng)方體的長(zhǎng)寬高分別為3,2,1,則該長(zhǎng)方體外接球的表面積為14π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.下列說(shuō)法正確的是①④
①已知定點(diǎn)F1(-1,0)、F2(1,0),則滿足||PF1|-|PF2||=3的動(dòng)點(diǎn)P的軌跡不存在;
②若動(dòng)點(diǎn)P到定點(diǎn)F的距離等于動(dòng)點(diǎn)P到定直線l的距離,則動(dòng)點(diǎn)P的軌跡為拋物線;
③命題“?x<0,都有x-x2<0”的否定為“?x0≥0,使得${x_0}-{x_0}^2≥0$”;
④已知定點(diǎn)F1(-2,0)、F2(2,0),則滿足|PF1|+|PF2|=4的動(dòng)點(diǎn)P的軌跡為線段F1F2;
⑤$\frac{x^2}{m}-\frac{y^2}{n}=1({mn>0})$表示焦點(diǎn)在x軸上的雙曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知集合A,B,C滿足A∪B={a,b,c},則滿足條件的組合(A,B)共有(  )組.
A.4B.8C.9D.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)${\vec e_1},{\vec e_2}$滿足$|{\vec e_1}|=2,|{\vec e_2}|=1$,且${\vec e_1}$與$\vec e$的夾角為60°,
(1)若$2t{\vec e_1}+7{\vec e_2}$與${\vec e_1}+t{\vec e_2}$的夾角為鈍角,求實(shí)數(shù)t的取值范圍
(2)求$2{\vec e_1}+{\vec e_2}$在$3{\vec e_1}+2{\vec e_2}$方向上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.與函數(shù)y=x是同一函數(shù)的函數(shù)是( 。
A.$y=\sqrt{x^2}$B.$y=\root{3}{x^3}$C.$y={(\sqrt{x})^2}$D.$y=\frac{x^2}{x}$

查看答案和解析>>

同步練習(xí)冊(cè)答案