【題目】函數(shù)y= 的部分圖象大致為(  )
A.
B.
C.
D.

【答案】C
【解析】解:函數(shù)y= = ,
可知函數(shù)是奇函數(shù),排除選項B,
當(dāng)x= 時,f( )= = ,排除A,
x=π時,f(π)=0,排除D.
故選:C.
【考點精析】認(rèn)真審題,首先需要了解函數(shù)奇偶性的性質(zhì)(在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇),還要掌握函數(shù)的值(函數(shù)值的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調(diào)性法)的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+1(a>0,b∈R)有極值,且導(dǎo)函數(shù)f′(x)的極值點是f(x)的零點.(極值點是指函數(shù)取極值時對應(yīng)的自變量的值)
(Ⅰ)求b關(guān)于a的函數(shù)關(guān)系式,并寫出定義域;
(Ⅱ)證明:b2>3a;
(Ⅲ)若f(x),f′(x)這兩個函數(shù)的所有極值之和不小于﹣ ,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠C=,AC=BC,M、N分別是BC、AB的中點,將BMN沿直線MN折起,使二面角B′﹣MN﹣B的大小為,則B'N與平面ABC所成角的正切值是(  。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知半徑為5的圓的圓心在軸上,圓心的橫坐標(biāo)是整數(shù),且與直線相切.

求:(1)求圓的方程;

2)設(shè)直線與圓相交于兩點,求實數(shù)的取值范圍;

3)在(2)的條件下,是否存在實數(shù),使得過點的直線垂直平分弦?

若存在,求出實數(shù)的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓形紙片的圓心為O,半徑為5cm,該紙片上的等邊三角形ABC的中心為O.D、E、F為圓O上的點,△DBC,△ECA,△FAB分別是以BC,CA,AB為底邊的等腰三角形.沿虛線剪開后,分別以BC,CA,AB為折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱錐.當(dāng)△ABC的邊長變化時,所得三棱錐體積(單位:cm3)的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量,函數(shù),

.

(1)當(dāng)時,求的值;

(2)若的最小值為,求實數(shù)的值;

(3)是否存在實數(shù),使函數(shù),有四個不同的零點?若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗員每隔30min從該生產(chǎn)線上隨機(jī)抽取一個零件,并測量其尺寸(單位:cm).下面是檢驗員在一天內(nèi)依次抽取的16個零件的尺寸:(12分)

抽取次序

1

2

3

4

5

6

7

8

零件尺寸

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

抽取次序

9

10

11

12

13

14

15

16

零件尺寸

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

經(jīng)計算得 = xi=9.97,s= = =0.212, ≈18.439, (xi )(i﹣8.5)=﹣2.78,其中xi為抽取的第i個零件的尺寸,i=1,2,…,16.
(1)求(xi , i)(i=1,2,…,16)的相關(guān)系數(shù)r,并回答是否可以認(rèn)為這一天生產(chǎn)的零件尺寸不隨生產(chǎn)過程的進(jìn)行而系統(tǒng)地變大或變。ㄈ魘r|<0.25,則可以認(rèn)為零件的尺寸不隨生產(chǎn)過程的進(jìn)行而系統(tǒng)地變大或變。
(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在( ﹣3s, +3s)之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查.
(。⿵倪@一天抽檢的結(jié)果看,是否需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查?
(ⅱ)在( ﹣3s, +3s)之外的數(shù)據(jù)稱為離群值,試剔除離群值,估計這條生產(chǎn)線當(dāng)天生產(chǎn)的零件尺寸的均值與標(biāo)準(zhǔn)差.(精確到0.01)
附:樣本(xi , yi)(i=1,2,…,n)的相關(guān)系數(shù)r= , ≈0.09.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直角坐標(biāo)系xoy中,橢圓的離心率為,過點.

(1)求橢圓C的方程;

(2)已知點P(2,1),直線與橢圓C相交于A,B兩點,且線段AB被直線OP平分.

①求直線的斜率;②若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯誤的是_____________.

①.如果命題“”與命題“”都是真命題,那么命題一定是真命題.

②.命題,則

③.命題“若,則”的否命題是:“若,則

④.特稱命題 “,使”是真命題.

查看答案和解析>>

同步練習(xí)冊答案