10.已知O為坐標(biāo)原點(diǎn),F(xiàn)是橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn),A,B分別為C的左,右頂點(diǎn).P為C上一點(diǎn),且PF⊥x軸.過點(diǎn)A的直線l與線段PF交于點(diǎn)M,與y軸交于點(diǎn)E.若直線BM經(jīng)過OE的中點(diǎn),則C的離心率為$\frac{1}{3}$.

分析 由題意可得F,A,B的坐標(biāo),設(shè)出直線AE的方程為y=k(x+a),分別令x=-c,x=0,可得M,E的坐標(biāo),再由中點(diǎn)坐標(biāo)公式可得H的坐標(biāo),運(yùn)用三點(diǎn)共線的條件:斜率相等,結(jié)合離心率公式,即可得到所求值.

解答 解:由題意可設(shè)F(-c,0),A(-a,0),B(a,0),
令x=-c,代入橢圓方程可得y=±$\frac{^{2}}{a}$,可得P(-c,±$\frac{^{2}}{a}$).
設(shè)直線AE的方程為y=k(x+a),
令x=-c,可得M(-c,k(a-c)),令x=0,可得E(0,ka),
設(shè)OE的中點(diǎn)為H,可得H(0,$\frac{ka}{2}$),
由B,H,M三點(diǎn)共線,可得kBH=kBM,即$\frac{a-c}{a+c}$=$\frac{1}{2}$,即為a=3c,
可得e=$\frac{c}{a}$=$\frac{1}{3}$,
故答案為:$\frac{1}{3}$.

點(diǎn)評 本題考查橢圓的離心率的求法,注意運(yùn)用橢圓的方程和性質(zhì),以及直線方程的運(yùn)用和三點(diǎn)共線的條件:斜率相等,考查化簡整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{3}$,$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow$)=0,則|$\overrightarrow$-2$\overrightarrow{a}$|=( 。
A.2B.2$\sqrt{3}$C.4D.4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.“中國式過馬路”是網(wǎng)友對部分中國人集體闖紅燈現(xiàn)象的一種調(diào)侃,即“湊夠一撮人就可以走了,和紅綠燈無關(guān)”,某校研究性學(xué)習(xí)小組對全校學(xué)生按“跟從別人闖紅燈”,“從不闖紅燈”、“帶頭闖紅燈”等三種形式進(jìn)行調(diào)查,獲得下表數(shù)據(jù):
  跟從別人闖紅燈 從不闖紅燈 帶頭闖紅燈
 男生 980 410 60
 女生 340 15060
用分層抽樣的方法從所有被調(diào)查的人中抽取一個容量為n的樣本,其中在“跟從別人闖紅燈”的人中抽取了66人.
(Ⅰ)求n的值;
(Ⅱ)在所抽取的“帶頭闖紅燈”的人中,在選取2人參加星期天社區(qū)組織的“文明交通”宣傳活動,求這2人中至少有一人是女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知f(x)=$\left\{\begin{array}{l}{-2,0<x<1}\\{1,x≥1}\end{array}$在區(qū)間(0,4)內(nèi)任取一個為x,則不等式log2x-(log${\;}_{\frac{1}{4}}$4x-1)f(log3x+1)≤$\frac{7}{2}$的概率為( 。
A.$\frac{1}{3}$B.$\frac{5}{12}$C.$\frac{1}{2}$D.$\frac{7}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.關(guān)于曲線$C:\frac{1}{x^2}+\frac{1}{y^2}=1$,有如下結(jié)論:
①曲線C關(guān)于原點(diǎn)對稱;
②曲線C關(guān)于直線x±y=0對稱;
③曲線C是封閉圖形,且封閉圖形的面積大于2π;
④曲線C不是封閉圖形,且它與圓x2+y2=2無公共點(diǎn);
⑤曲線C與曲線$D:|x|+|y|=2\sqrt{2}$有4個交點(diǎn),這4點(diǎn)構(gòu)成正方形.其中所有正確結(jié)論的序號為①②④⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列推斷錯誤的個數(shù)是( 。
①命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”
②命題“若x2=1,則x=1”的否命題為:若“x2=1,則x≠1”
③“x<1”是“x2-3x+2>0”的充分不必要條件
④若p∧q為假命題,則p,q均為假命題.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的否命題是若a,b不都是奇數(shù),則a+b不是偶數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x-{x}^{2},x∈[0,1]}\\{-\frac{\sqrt{5}}{5}f(x-1),x∈[1,3]}\end{array}\right.$
(Ⅰ)求f($\frac{5}{2}$)及x∈[2,3]時函數(shù)f(x)的解析式
(Ⅱ)若f(x)≤$\frac{k}{x}$對任意x∈(0,3]恒成立,求實(shí)數(shù)k的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知M、N分別是四面體OABC的棱OA,BC的中點(diǎn),點(diǎn)P在線MN上,且MP=2PN,設(shè)向量$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,$\overrightarrow{OC}$=$\overrightarrow{c}$,則$\overrightarrow{OP}$=(  )
A.$\frac{1}{6}$$\overrightarrow{a}$+$\frac{1}{6}$$\overrightarrow$+$\frac{1}{6}$$\overrightarrow{c}$B.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$+$\frac{1}{3}$$\overrightarrow{c}$C.$\frac{1}{6}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$+$\frac{1}{3}$$\overrightarrow{c}$D.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{6}$$\overrightarrow$+$\frac{1}{6}$$\overrightarrow{c}$

查看答案和解析>>

同步練習(xí)冊答案