分析 根據(jù)函數(shù)奇偶性的性質(zhì)求出當x<0的解析式,解不等式即可.
解答 解:若x<0,則-x>0,
∵當x>0時,f(x)=x2-4x,
∴當-x>0時,f(-x)=x2+4x,
∵f(x)是定義在R上的奇函數(shù),
∴f(-x)=x2+4x=-f(x),
則f(x)=-x2-4x,x<0,
當x>0時,不等式f(x)>x等價為x2-4x>x即x2-5x>0,
得x>5或x<0,此時x>5,
當x<0時,不等式f(x)>x等價為-x2-4x>x即x2+5x<0,
得-5<x<0,
當x=0時,不等式f(x)>x等價為0>0不成立,
綜上,不等式的解為x>5或-5<x<0,
故不等式的解集為(-5,0)∪(5,+∞),
故答案為:(-5,0)∪(5,+∞)
點評 本題主要考查不等式的解集的求解,根據(jù)函數(shù)奇偶性的性質(zhì)求出函數(shù)的解析式是解決本題的關鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | cosθ+isinθ | B. | 2cosθ | C. | 2sinθ | D. | isin2θ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{3}{4}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 66 | B. | 76 | C. | 63 | D. | 73 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\overrightarrow{A{C}_{1}}$ | B. | $\overrightarrow{C{A}_{1}}$ | C. | $\overrightarrow{A{D_1}}$ | D. | $\overrightarrow{{D_1}A}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com