【題目】已知函數(shù),其中常數(shù).

(1)若上單調(diào)遞增,求的取值范圍;

(2)令,將函數(shù)的圖象向左平移個(gè)單位,再向上平移1個(gè)單位,得到函數(shù)的圖象.區(qū)間滿足:上至少含有30個(gè)零點(diǎn).在所有滿足上述條件的中,求的最小值.

【答案】(1);(2).

【解析】(1)因?yàn)楹瘮?shù)y=f(x)在上單調(diào)遞增,且,

所以,且

所以.即的取值范圍是.

(2)

的圖象向左平移個(gè)單位,再向上平移1個(gè)單位后得到的圖象,所以.

,得

所以兩個(gè)相鄰零點(diǎn)之間的距離為.

若b-a最小,則a和b都是零點(diǎn),

此時(shí)在區(qū)間[a,π+a],[a,2π+a],…,[a,mπ+a](mN*)上分別恰有3,5,…,2m+1個(gè)零點(diǎn),所以在區(qū)間[a,14π+a]上恰有29個(gè)零點(diǎn),

從而在區(qū)間(14π+a,b]上至少有一個(gè)零點(diǎn),

所以.

另一方面,在區(qū)間上恰有30個(gè)零點(diǎn),

因此,b-a的最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) +cos2x+a(a∈R,a為常數(shù)). (Ⅰ)求函數(shù)的最小正周期;
(Ⅱ)求函數(shù)的單調(diào)遞減區(qū)間;
(Ⅲ)若 時(shí),f(x)的最小值為﹣2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f′(x)sinx+f(x)cosx>0且f( )=1,則f(x)sinx≤1的整數(shù)解的集合為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司有一批專業(yè)技術(shù)人員,對(duì)他們進(jìn)行年齡狀況和接受教育程度(學(xué)歷)的調(diào)查,其結(jié)果(人數(shù)分布)如表:

學(xué)歷

35歲以下

35~50歲

50歲以上

本科

80

30

20

研究生

x

20

y

(Ⅰ)用分層抽樣的方法在35~50歲年齡段的專業(yè)技術(shù)人員中抽取一個(gè)容量為10的樣本,將該樣本看成一個(gè)總體,從中任取3人,求至少有1人的學(xué)歷為研究生的概率;
(Ⅱ)在這個(gè)公司的專業(yè)技術(shù)人員中按年齡狀況用分層抽樣的方法抽取N個(gè)人,其中35歲以下48人,50歲以上10人,再?gòu)倪@N個(gè)人中隨機(jī)抽取出1人,此人的年齡為50歲以上的概率為 ,求x、y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面α及直線a,b,則下列說(shuō)法正確的是(
A.若直線a,b與平面α所成角都是30°,則這兩條直線平行
B.若直線a,b與平面α所成角都是30°,則這兩條直線不可能垂直
C.若直線a,b平行,則這兩條直線中至少有一條與平面α平行
D.若直線a,b垂直,則這兩條直線與平面α不可能都垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,角A,B,C所對(duì)的邊分別是a,b,c,且.

1)證明:sinAsinB=sinC;

2)若,求tanB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,a,b,c分別是角A,B,C的對(duì)邊, = ,且a+c=2.
(1)求角B;
(2)求邊長(zhǎng)b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》中有這樣一則問(wèn)題:“今有良馬與弩馬發(fā)長(zhǎng)安,至齊,齊去長(zhǎng)安三千里,良馬初日行一百九十三里,日增一十三里;弩馬初日行九十七里,日減半里,良馬先至齊,復(fù)還迎弩馬.”則現(xiàn)有如下說(shuō)法:

①弩馬第九日走了九十三里路;

②良馬前五日共走了一千零九十五里路;

③良馬和弩馬相遇時(shí),良馬走了二十一日.

則以上說(shuō)法錯(cuò)誤的個(gè)數(shù)是( )個(gè)

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= 是定義在(﹣1,1)上的奇函數(shù),且f( )= ,則不等式f(t﹣1)+f(t)<0的解集為(
A.(0,1)
B.(0, ]
C.(0,
D.( ,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案