分析 利用平面向量的數(shù)量積公式解答即可.
解答 解:設(shè)兩個(gè)向量的夾角為θ,
則cosθ=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}$=$\frac{-5×18\sqrt{3}}{3×5×12}$=$-\frac{\sqrt{3}}{2}$,又θ∈[0,π],所以θ=$\frac{5π}{6}$;
故答案為:$\frac{5π}{6}$.
點(diǎn)評(píng) 本題考查了利用平面向量的數(shù)量積公式求向量的夾角;熟記公式是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {α|α=2kπ-$\frac{π}{4}$,k∈Z} | B. | {α|α=2kπ+$\frac{π}{4}$,k∈Z} | C. | {α|α=2kπ-$\frac{5π}{4}$,k∈Z} | D. | {α|α=2kπ+$\frac{5π}{4}$,k∈Z} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com