【題目】設(shè)、分別是橢圓C:的左、右焦點,,直線1過且垂直于x軸,交橢圓C于A、B兩點,連接A、B、,所組成的三角形為等邊三角形。
(1)求橢圓C的方程;
(2)過右焦點的直線m與橢圓C相交于M、N兩點,試問:橢圓C上是否存在點P,使成立?若存在,求出點P的坐標;若不存在,說明理由.
【答案】(1)橢圓;(2)
【解析】
(1)由題意布列關(guān)于a,b的方程組,解之,即可得到橢圓C的方程;
(2)設(shè)、,設(shè)y=k(x﹣1)(k≠0),代入橢圓方程得,由此運用韋達定理和向量的坐標運算,代入橢圓方程,解得k,求出點P的坐標.
(1)
由可得,
等邊三角形中:,,
則,得,
又因為,所以,
則橢圓;
(2)設(shè)、,
則由題意知的斜率為一定不為,故不妨設(shè),
代入橢圓的方程中,
整理得,
顯然.
由韋達定理有:,①
且②
假設(shè)存在點,使成立,則其充要條件為:
點,
點在橢圓上,即.
整理得
又在橢圓上,即,,
故由①②代入:,解得,
則。
科目:高中數(shù)學 來源: 題型:
【題目】某商場經(jīng)銷某商品,根據(jù)以往資料統(tǒng)計,顧客采用的付款期數(shù)的分布列為
1 | 2 | 3 | 4 | 5 | |
0.4 | 0.2 | 0.2 | 0.1 | 0.1 |
某商場經(jīng)銷一件該商品,采用1期付款,其利潤為200元;分2期或3期付款,其利潤為250元;分4期或5期付款,其利潤為300元.表示經(jīng)銷一件該商品的利潤.
(1)求事件:“購買該商品的3位顧客中,至少有1位采用1期付款”的概率;
(2)求的分布列
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費對年銷售量(單位:t)的影響.該公司對近5年的年宣傳費和年銷售量數(shù)據(jù)進行了研究,發(fā)現(xiàn)年宣傳費x(萬元)和年銷售量y(單位:t)具有線性相關(guān)關(guān)系,并對數(shù)據(jù)作了初步處理,得到下面的一些統(tǒng)計量的值.
(1)根據(jù)表中數(shù)據(jù)建立年銷售量y關(guān)于年宣傳費x的回歸方程;
(2)已知這種產(chǎn)品的年利潤z與x,y的關(guān)系為,根據(jù)(1)中的結(jié)果回答下列問題:
①當年宣傳費為10萬元時,年銷售量及年利潤的預(yù)報值是多少?
②估算該公司應(yīng)該投入多少宣傳費,才能使得年利潤與年宣傳費的比值最大.
附:回歸方程中的斜率和截距的最小二乘估計公式分別為
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)當a=1時,求函數(shù)的單調(diào)區(qū)間:
(Ⅱ)求函數(shù)的極值;
(Ⅲ)若函數(shù)有兩個不同的零點,求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年4月,北京世界園藝博覽會開幕,為了保障園藝博覽會安全順利地進行,某部門將5個安保小組全部安排到指定的三個不同區(qū)域內(nèi)值勤,則每個區(qū)域至少有一個安保小組的排法有( )
A.150種B.240種C.300種D.360種
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com