已知橢圓C:的長軸長是短軸長的倍,F(xiàn)1,F(xiàn)2是它的左,右焦點(diǎn).
(1)若P∈C,且,|PF1|•|PF2|=4,求F1、F2的坐標(biāo);
(2)在(1)的條件下,過動點(diǎn)Q作以F2為圓心、以1為半徑的圓的切線QM(M是切點(diǎn)),且使,求動點(diǎn)Q的軌跡方程.
【答案】分析:(1)依題意知,由,知|PF1|2+|PF2|2=(2c)2=4(a2-b2)=8b2,由橢圓定義可知|PF1|+|PF2|=2a,(|PF1|+|PF2|)2=8b2+8=4a2,由此能求出F1、F2的坐標(biāo).
(2)由,知|QF1|2=2|QM|2,由QM是⊙F2的切線,知|QF1|2=2(|QF2|2-1).設(shè)Q(x,y),則(x+2)2+y2=2[(x-2)2+y2-1].由此能求出動點(diǎn)Q的軌跡方程.
解答:解:(1)依題意知①(1分)
∴PF1⊥PF2,
∴|PF1|2+|PF2|2=(2c)2=4(a2-b2)=8b2(3分)
又P∈C,由橢圓定義可知|PF1|+|PF2|=2a,
(|PF1|+|PF2|)2=8b2+8=4a2②(5分)
由①②得a2=6,b2=2⇒c=2.
∴F1(-2,0)、F2(2,0)(7分)
(2)由已知,
即|QF1|2=2|QM|2(9分)
∵QM是⊙F2的切線,
∴|QM|2=|QF2|2-1
∴|QF1|2=2(|QF2|2-1)(11分)
設(shè)Q(x,y),
則(x+2)2+y2=2[(x-2)2+y2-1]
即(x-6)2+y2=34(或x2+y2-12x+2=0)(13分)
綜上所述,所求動點(diǎn)Q的軌跡方程為:(x-6)2+y2=34(14分)
點(diǎn)評:本題考查焦點(diǎn)坐標(biāo)和軌跡方程的求法,解題時要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件,合理地進(jìn)行等價轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年黑龍江省哈爾濱市高三上學(xué)期期中考試文科數(shù)學(xué)卷 題型:解答題

(本小題滿分12分)

已知橢圓C:的長軸長為4.

(1)若以原點(diǎn)為圓心,橢圓短半軸長為半徑的圓與直線相切,求橢圓焦點(diǎn)坐標(biāo);

(2)若點(diǎn)P是橢圓C上的任意一點(diǎn),過原點(diǎn)的直線L與橢圓交于M,N兩點(diǎn),直線PM,PN的斜率乘積為,求橢圓的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:數(shù)學(xué)公式的長軸長是短軸長的數(shù)學(xué)公式倍,F(xiàn)1,F(xiàn)2是它的左,右焦點(diǎn).
(1)若P∈C,且數(shù)學(xué)公式,|PF1|•|PF2|=4,求橢圓C的方程;
(2)在(1)的條件下,過動點(diǎn)Q作以F2為圓心、以1為半徑的圓的切線QM(M是切點(diǎn)),且使QF1|=數(shù)學(xué)公式|QM|,,求動點(diǎn)Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河北省衡水市冀州中學(xué)高二(下)6月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知橢圓C:的長軸長為,離心率
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若過點(diǎn)B(2,0)的直線l(斜率不等于零)與橢圓C交于不同的兩點(diǎn)E、F(E在B、F之間),且△OBE與△OBF的面積之比為,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《第2章 圓錐曲線與方程》2010年單元測試卷(1)(解析版) 題型:解答題

已知橢圓C:的長軸長為,離心率
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若過點(diǎn)B(2,0)的直線l(斜率不等于零)與橢圓C交于不同的兩點(diǎn)E、F(E在B、F之間),且△OBE與△OBF的面積之比為,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年安徽省淮南四中高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

已知橢圓C:的長軸長是短軸長的倍,F(xiàn)1,F(xiàn)2是它的左,右焦點(diǎn).
(1)若P∈C,且,|PF1|•|PF2|=4,求橢圓C的方程;
(2)在(1)的條件下,過動點(diǎn)Q作以F2為圓心、以1為半徑的圓的切線QM(M是切點(diǎn)),且使QF1|=|QM|,,求動點(diǎn)Q的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案