【題目】如圖,已知面垂直于圓柱底面, 為底面直徑, 是底面圓周上異于的一點(diǎn), .求證:
(1)平面平面;
(2)求幾何體的最大體積.
【答案】(1)見(jiàn)解析;(2).
【解析】試題分析:(1)證明兩個(gè)平面垂直,應(yīng)用兩面垂直的判定定理,在其中一個(gè)面內(nèi)找一條直線與另一個(gè)面垂直。由為底面直徑, 是底面圓周上異于的一點(diǎn),可得。由面垂直于圓柱底面,可得平面,因?yàn)?/span>平面,所以。因?yàn)?/span>, 平面, 平面,再由直線與平面垂直的判定定理可得平面.又因?yàn)?/span>平面,由面面垂直的判定定理可得平面平面. (2)要求幾何體的最大體積,應(yīng)先把幾何體的體積表示出來(lái),轉(zhuǎn)化為求函數(shù)的最值問(wèn)題。該幾何體是三棱錐,其體積為底面積與高的乘積三分之一,因?yàn)?/span>平面,所以是三棱錐的高。因?yàn)?/span>為底面直徑,且,故可設(shè),在中, 。所以三棱錐的體積為
,因?yàn)?/span>為常數(shù)4,所以可由基本不等式求其最大值 .
試題解析:(1)證明:∵是底面圓周上異于的任意一點(diǎn),且是圓柱底面圓的直徑,∴,
∵平面, 平面,∴
∵, 平面, 平面
∴平面.又平面,
∴平面平面.
(2)設(shè),在中, ,
∵平面,∴是三棱錐的高
因此,三棱錐的體積為
.當(dāng)且僅當(dāng),即時(shí),三棱錐的體積取最大值。
∴當(dāng),即時(shí),三棱錐的體積的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程為,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為的正半軸,建立平面直角坐標(biāo)系.
(1)若曲線為參數(shù))與曲線相交于兩點(diǎn),求;
(2)若是曲線上的動(dòng)點(diǎn),且點(diǎn)的直角坐標(biāo)為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程是(為參數(shù)),以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)寫(xiě)出曲線的普通方程和直線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),直線與曲線相交于兩點(diǎn),且,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有六支足球隊(duì)參加單循環(huán)比賽(即任意兩支球隊(duì)只踢一場(chǎng)比賽),第一周的比賽中,各踢了場(chǎng), 各踢了場(chǎng), 踢了場(chǎng),且隊(duì)與隊(duì)未踢過(guò), 隊(duì)與隊(duì)也未踢過(guò),則在第一周的比賽中, 隊(duì)踢的比賽的場(chǎng)數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 過(guò)點(diǎn),且離心率為.過(guò)點(diǎn)的直線與橢圓交于, 兩點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(diǎn)為橢圓的右頂點(diǎn),探究: 是否為定值,若是,求出該定值,若不是,請(qǐng)說(shuō)明理由.(其中, , 分別是直線、的斜率)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),求最大的整數(shù),使得時(shí),函數(shù)圖象上的點(diǎn)都在
所表示的平面區(qū)域內(nèi)(含邊界).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有甲、乙兩個(gè)桔柚(球形水果)種植基地,已知所有采摘的桔柚的直徑都在范圍內(nèi)(單位:毫米,以下同),按規(guī)定直徑在內(nèi)為優(yōu)質(zhì)品,現(xiàn)從甲、乙兩基地所采摘的桔柚中各隨機(jī)抽取500個(gè),測(cè)量這些桔柚的直徑,所得數(shù)據(jù)整理如下:
(1)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,并回答是否有以上的把握認(rèn)為“桔柚直徑與所在基地有關(guān)”?
(2)求優(yōu)質(zhì)品率較高的基地的500個(gè)桔柚直徑的樣本平均數(shù) (同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表);
(3)記甲基地直徑在范圍內(nèi)的五個(gè)桔柚分別為,現(xiàn)從中任取二個(gè),求含桔柚的概率.
附: , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為、,且點(diǎn)到橢圓上任意一點(diǎn)的最大距離為3,橢圓的離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在斜率為的直線與以線段為直徑的圓相交于、兩點(diǎn),與橢圓相交于、,且?若存在,求出直線的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年6月深圳地鐵總公司對(duì)深圳地鐵1號(hào)線30個(gè)站的工作人員的服務(wù)態(tài)度進(jìn)行了滿意度調(diào)查,其中世界之窗、白石洲、高新園、深大、桃園、大新6個(gè)站的得分情況如下:
地鐵站 | 世界之窗 | 白石州 | 高新園 | 深大 | 桃園 | 大新 |
滿意度得分 | 70 | 76 | 72 | 70 | 72 | x |
已知6個(gè)站的平均得分為75分.
(1)求大新站的滿意度得分x,及這6個(gè)站滿意度得分的標(biāo)準(zhǔn)差;
(2)從表中前5個(gè)站中,隨機(jī)地選2個(gè)站,求恰有1個(gè)站得分在區(qū)間(68,75)中的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com