【題目】已知拋物線C經(jīng)過點(diǎn),其焦點(diǎn)為F,M為拋物線上除了原點(diǎn)外的任一點(diǎn),過M的直線lx軸、y軸分別交于A,B兩點(diǎn).

求拋物線C的方程以及焦點(diǎn)坐標(biāo);

的面積相等,證明直線l與拋物線C相切.

【答案】(Ⅰ)拋物線的方程為x2=4y,其焦點(diǎn)坐標(biāo)為( 0,1),(Ⅱ)見解析

【解析】

把點(diǎn)的坐標(biāo)代入拋物線方程中,求出,這樣就可以直接寫出拋物線C的方程以及焦點(diǎn)坐標(biāo);

設(shè)出點(diǎn)的坐標(biāo),已知的面積相等,可以推出的中點(diǎn),求出的坐標(biāo),這樣可以求出直線的方程,與拋物線的方程聯(lián)立,得到一個(gè)一元二次方程,只要證明出這個(gè)一元二次方程根的判別式為零,就可以證明出直線l與拋物線C相切.

解:(Ⅰ)∵拋物線x2=2py過點(diǎn)P2,1),∴4=2p,解得p=2

∴拋物線的方程為x2=4y,其焦點(diǎn)坐標(biāo)為( 01),

(Ⅱ)設(shè)(x0,),由AFM的面積等于AFB的面積,可得|MA|=|AB|,

AMB的中點(diǎn),∴A,0),B0,-),

∴直線l的方程為y=x-),

直線l的方程與拋物線C的方程聯(lián)立得,得x2-2x0x+x02=0,得x=x0y=,

∴直線l與拋物線C只有一個(gè)公共點(diǎn),

∴直線l與拋物線相切,且切點(diǎn)為M

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的個(gè)數(shù)是( )

1)在頻率分布直方圖中,中位數(shù)左邊和右邊的直方圖的面積相等.

2)如果一組數(shù)中每個(gè)數(shù)減去同一個(gè)非零常數(shù),則這一組數(shù)的平均數(shù)改變,方差不改變.

3)一個(gè)樣本的方差s2=[x32+X—32+ +X32],則這組數(shù)據(jù)總和等于60.

4)數(shù)據(jù)的方差為,則數(shù)據(jù)的方差為.

A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).

(1) 證明:PB∥平面AEC

(2) 設(shè)二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,頂點(diǎn)在底面的射影恰好是菱形對(duì)角線的交點(diǎn),且,,其中.

(1)當(dāng)時(shí),求證:

(2)當(dāng)與平面所成角的正弦值為時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某機(jī)器生產(chǎn)商,對(duì)一次性購買兩臺(tái)機(jī)器的客戶推出兩種超過質(zhì)保期后兩年內(nèi)的延保維修方案:

方案一:交納延保金元,在延保的兩年內(nèi)可免費(fèi)維修次,超過次每次收取維修費(fèi)元;

方案二:交納延保金元,在延保的兩年內(nèi)可免費(fèi)維修次,超過次每次收取維修費(fèi)元.

某工廠準(zhǔn)備一次性購買兩臺(tái)這種機(jī)器,現(xiàn)需決策在購買機(jī)器時(shí)應(yīng)購買哪種延保方案,為此搜集并整理了臺(tái)這種機(jī)器超過質(zhì)保期后延保兩年內(nèi)維修的次數(shù),統(tǒng)計(jì)得下表:

維修次數(shù)

0

1

2

3

機(jī)器臺(tái)數(shù)

20

10

40

30

以上臺(tái)機(jī)器維修次數(shù)的頻率代替一臺(tái)機(jī)器維修次數(shù)發(fā)生的概率,記表示這兩臺(tái)機(jī)器超過質(zhì)保期后延保兩年內(nèi)共需維修的次數(shù).

的分布列;

以所需延保金與維修費(fèi)用之和的期望值為決策依據(jù),該工廠選擇哪種延保方案更合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】判斷下列四個(gè)命題:①直線在平面內(nèi),又在平面內(nèi),則、重合;②直線、相交,直線、相交,直線、相交,則直線、共面;③線、共面,直線、共面,則直線也共面;④線不在平面內(nèi),則直線與平面內(nèi)任何一點(diǎn)都可唯一確定一個(gè)平面;其中假命題是______.(寫出所有假命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中,邊,令,,過邊上一點(diǎn)(異于端點(diǎn))引邊的垂線,垂足為,再由引邊的垂線,垂足為,又由引邊的垂線,垂足為,同樣的操作連續(xù)進(jìn)行,得到點(diǎn)列、,設(shè));

1)求;

2)結(jié)論是否正確?請(qǐng)說明理由;

3)若對(duì)于任意,不等式恒成立,求的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】201810月考考試中,成都外國語學(xué)校共有250名高三文科學(xué)生參加考試,數(shù)學(xué)成績的頻率分布直方圖如圖:

1)如果成績大于130的為特別優(yōu)秀,這250名學(xué)生中本次考試數(shù)學(xué)成績特別優(yōu)秀的大約多少人?

2)如果這次考試語文特別優(yōu)秀的有5人,語文和數(shù)學(xué)兩科都特別優(yōu)秀的共有2人,從(1)中的數(shù)學(xué)成績特別優(yōu)秀的人中隨機(jī)抽取2人,求選出的2人中恰有1名兩科都特別優(yōu)秀的概率.

3)根據(jù)(1),(2)的數(shù)據(jù),是否有99%以上的把握認(rèn)為語文特別優(yōu)秀的同學(xué),數(shù)學(xué)也特別優(yōu)秀?

P

0.50

0.40

0.010

0.005

0.001

k0

0.455

0.708

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù)

(1)討論函數(shù)的單調(diào)性;

(2)若的極值點(diǎn),且曲線在兩點(diǎn), 處的切線互相平行,這兩條切線在y軸上的截距分別為、,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案