把函數(shù)y=lnx-2的圖象按向量=(-1,2)平移得到函數(shù)y=f(x)的圖象.
(1)若x>0,證明;f(x)>;
(2不等式x2≤f(x2)+m2-2bm-3對b∈[-1,1],x∈[-1,1]時恒成立,求實(shí)數(shù)m的取值范圍.
【答案】分析:(1)先根據(jù)向量的平移,求得f(x)=ln(x+1),再構(gòu)建函數(shù),確定函數(shù)的單調(diào)性,從而可證不等式;
(2)不等式x2≤f(x2)+m2-2bm-3對b∈[-1,1],x∈[-1,1]時恒成立,等價于-2bm-3,對b∈[-1,1],x∈[-1,1]時恒成立,求出左邊函數(shù)的最大值,進(jìn)一步可化為對b∈[-1,1]時,0≤m2-2bm-3恒成立,即使2mb+3-m2≤0恒成立,從而可求實(shí)數(shù)m的取值范圍.
解答:(1)證明:∵函數(shù)y=lnx-2的圖象按向量=(-1,2)平移得到函數(shù)y=f(x)的圖象
∴f(x)=ln(x+1),
構(gòu)建函數(shù),
求導(dǎo)函數(shù)得
∵x>0,∴F′(x)>0,
∴在(0,+∞)上,F(xiàn)(x)為增函數(shù).
∴F(x)>F(0)=0,

;
(2)解:∵不等式x2≤f(x2)+m2-2bm-3對b∈[-1,1],x∈[-1,1]時恒成立
-2bm-3,對b∈[-1,1],x∈[-1,1]時恒成立
設(shè)g(x)=+1),
則g′(x)=x-,
x∈(-1,0)時,g′(x)>0,x∈(0,1)時,g′(x)<0.
∴x∈(-1,1)時,g(x)≤g(0)=0.
∴x∈(-1,1)時,0≤m2-2bm-3,
∴問題可化為對b∈[-1,1]時,0≤m2-2bm-3恒成立,即使2mb+3-m2≤0恒成立.
,
∴m≤-3或m≥3
綜上,實(shí)數(shù)m的取值范圍是(-∞,-3]∪[3,+∞).
點(diǎn)評:本題重點(diǎn)考查導(dǎo)數(shù)知識的運(yùn)用,考查利用導(dǎo)數(shù)確定函數(shù)的單調(diào)性,進(jìn)而證明不等式,考查恒成立問題的理解與處理,綜合性強(qiáng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

把函數(shù)y=lnx-2的圖象按向量
a
=(-1,2)
平移得到函數(shù)y=f(x)的圖象.
(I)若x>0,試比較f(x)與
2x
x+2
的大小,并說明理由;
(II)若不等式
1
2
x2≤f(x2)+m2-2bm-3
.當(dāng)x,b∈[-1,1]時恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把函數(shù)y=lnx-2的圖象按向量
α
=(-1,2)平移得到函數(shù)y=f(x)的圖象.
(1)若x>0,證明;f(x)>
2x
x+2

(2不等式
1
2
x2≤f(x2)+m2-2bm-3對b∈[-1,1],x∈[-1,1]時恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

把函數(shù)y=lnx-2的圖象按向量數(shù)學(xué)公式=(-1,2)平移得到函數(shù)y=f(x)的圖象.
(1)若x>0,證明;f(x)>數(shù)學(xué)公式;
(2不等式數(shù)學(xué)公式x2≤f(x2)+m2-2bm-3對b∈[-1,1],x∈[-1,1]時恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把函數(shù)y=lnx-2的圖象按向量a=(-1,2)平移得到函數(shù)y=f(x)的圖象.

(1)若x>0,證明:f(x)>;

(2)若不等式x2≤f(x2)+m2-2bm-3對b∈[-1,1],x∈[-1,1]時恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案