把一顆骰子投擲兩次,第一次出現(xiàn)的點數(shù)記為a,第二次出現(xiàn)的點數(shù)記為b.已知直線l1:x+2y=2,直線l2:ax+by=4,試求:直線l1、l2相交的概率.
考點:列舉法計算基本事件數(shù)及事件發(fā)生的概率,直線的一般式方程與直線的平行關(guān)系
專題:直線與圓,概率與統(tǒng)計
分析:先求得l2直線共有36種可能,其中,l1∥l2 或l1 與l2重合的情況有3種,由此求得兩條直線平行或重合的概率P,則1-p即為所求.
解答: 解:a、b的所有可能取值為1、2、3、4、5、6.
則l2直線共有36種可能.   
當(dāng)-
a
b
=-
1
2
時,即b=2a時,l1∥l2 或l1 與l2重合.
此時的情況有:a=1,b=2;a=2,b=4;a=3,b=6,共三種. 
兩條直線平行的概率P=
3
36
=
1
12

所以,兩條直線相交的概率P=1-
1
12
=
11
12
點評:本題主要考查古典概率及其計算公式,兩條直線的位置關(guān)系的判定,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若m,n是兩條不同的直線,α,β,γ是三個不同的平面,則下面命題正確的是(  )
A、若m⊆β,α⊥β,則m⊥α
B、若α∩γ=m,β∩γ=n,則α∥β
C、若m⊥β,m∥α,則α⊥β
D、若α⊥β,α⊥γ,則β⊥γ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+xsinx+cosx.
(1)求f(x)的最小值;
(2)若曲線y=f(x)在點(a,f(a))處與直線y=b相切,求a與b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在(0,+∞)上的函數(shù)f(x)對任意的x,y>0,均有f(xy)=f(x)•f(y),且當(dāng)x>1時,f(x)<1,f(3)=
1
9

(1)求證f(x)>0;
(2)求證f(x)在(0,+∞)上單調(diào)遞減;
(3)若f(m)=9,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了凈化空氣,某科研單位根據(jù)實驗得出,在一定范圍內(nèi),每噴灑1個單位的凈化劑,空氣中釋放的濃度y(單位:毫克/立方米)隨著時間x(單位:天)變化的函數(shù)關(guān)系式近似為y=
16
8-x
-1 ,   0 ≤ x ≤ 4 
5-
1
2
x ,     4<x ≤ 10
.若多次噴灑,則某一時刻空氣中的凈化劑濃度為每次投放的凈化劑在相應(yīng)時刻所釋放的濃度之和.由實驗知,當(dāng)空氣中凈化劑的濃度不低于4(毫克/立方米)時,它才能起到凈化空氣的作用.
(1)若一次噴灑4個單位的凈化劑,則凈化時間可達幾天?
(2)若第一次噴灑2個單位的凈化劑,6天后再噴灑a(1≤a≤4)個單位的藥劑,要使接下來的4天中能夠持續(xù)有效凈化,試求a的最小值(精確到0.1,參考數(shù)據(jù):
2
取1.4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校從高三全體500名學(xué)生中抽50名學(xué)生做學(xué)習(xí)狀況問卷調(diào)查,現(xiàn)將500名學(xué)生從l到500進行編號,求得間隔數(shù)k=
500
50
=10,即每10人抽取一個人,在1~10中隨機抽取一個數(shù),如果抽到的是6,則從125~140的數(shù)中應(yīng)取的數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若某圖的程序框圖如圖所示,則該程序運行后的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
e1
e2
為相互垂直的單位向量,若向量λ
e1
+
e2
e1
e2
的夾角等于60°,則實數(shù)λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正三角形ABC中,D是邊BC上的點,若AB=3,BD=1,則
AB
AD
=( 。
A、
21
2
B、
15
2
C、
13
2
D、
9
2

查看答案和解析>>

同步練習(xí)冊答案