分析 由條件利用同角三角函數(shù)的基本關系,以及三角函數(shù)在各個象限中的符號求得cosα-sinα 的值,可得 $\frac{1-tanα}{1+tanα}$=$\frac{cosα-sinα}{cosα+sinα}$ 的值.
解答 解:∵sinα+cosα=$\frac{1}{2}$,∴1+2sinαcosα=$\frac{1}{4}$,求得2sinαcosα=-$\frac{3}{4}$,
結合α∈(0,π),可得α為鈍角,
∴cosα-sinα=-$\sqrt{{(sinα-cosα)}^{2}}$=-$\frac{\sqrt{7}}{2}$,
∴$\frac{1-tanα}{1+tanα}$=$\frac{cosα-sinα}{cosα+sinα}$=$\frac{-\frac{\sqrt{7}}{2}}{\frac{1}{2}}$=-$\sqrt{7}$.
點評 本題主要考查同角三角函數(shù)的基本關系,以及三角函數(shù)在各個象限中的符號,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 15 | B. | 17 | C. | 24 | D. | 35 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a+d>b+c | B. | a-d>b-c | C. | ac>bd | D. | $\frac{a}{c}$<$\frac9dtfnfp$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 2 | C. | $\sqrt{5}$ | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{2-\sqrt{3}}}{4}$ | B. | $\frac{{2+\sqrt{3}}}{4}$ | C. | $\frac{1}{4}$ | D. | $\frac{{\sqrt{3}}}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com