分析 (1)根據(jù)f(0)=0即可求出a;
(2)討論a的取值:a<2,2≤a≤3,兩種情況,求出每種情況下的f(x)的最小值,讓最小值大于等于0從而求出a的取值范圍.
解答 解:(1)∵f(x)在原點(diǎn)有定義,f(x)為奇函數(shù);
∴f(0)=-a=0;
∴a=0;
(2)f(x)=x|x-a|-a;
∴①若a<2,則x=2時(shí),f(x)在[2,3]上取得最小值f(2)=2(2-a)-a=4-3a;
∴4-3a≥0,a≤$\frac{4}{3}$;
∴a≤$\frac{4}{3}$;
②若2≤a≤3,則x=a時(shí),f(x)取得最小值f(a)=-a;
-a<0,不滿足f(x)≥0;
即這種情況不存在.
∴綜上得a的取值范圍為(-∞,$\frac{4}{3}$].
點(diǎn)評 考查奇函數(shù)的定義,奇函數(shù)在原點(diǎn)有定義時(shí)f(0)=0,函數(shù)零點(diǎn)的定義,含絕對值函數(shù)求最值的方法,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x甲<x乙,m甲>m乙 | B. | x甲<x乙,m甲<m乙 | C. | x甲>x乙,m甲>m乙 | D. | x甲>x乙,m甲<m乙 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 綜合法是由因?qū)Ч捻樛谱C法 | |
B. | 分析法是執(zhí)果索因的逆推證法 | |
C. | 分析法是從要證的結(jié)論出發(fā),尋求使它成立的充分條件 | |
D. | 綜合法與分析法在同一題的證明中不可能同時(shí)采用 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (3,1) | B. | (0,2) | C. | (1,3) | D. | (0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | -4 | C. | -5 | D. | -6 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com