某省級(jí)示范高中2015年有向甲、乙、丙三所大學(xué)推薦保送生的名額,根據(jù)這三所大學(xué)保送生推薦的條件,該校共有四名學(xué)生符合推薦條件學(xué)校按照保送生推選的程序,首先由這四名學(xué)生各自自主申請(qǐng),每位申請(qǐng)人只能申請(qǐng)一所大學(xué)的保送名額,已知這四名學(xué)生申請(qǐng)其中任一所大學(xué)都是等可能的,而且他們?cè)谏暾?qǐng)時(shí)互不影響.
(1)求恰有兩位學(xué)生都申請(qǐng)甲這所大學(xué)的概率;
(2)記這四位學(xué)生所申請(qǐng)的大學(xué)的個(gè)數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望;
(3)對(duì)于(2)中的ξ,設(shè)“函數(shù)f(x)=3sin
x+ξ
2
π,x∈R是偶函數(shù)”為事件D,求事件D發(fā)生的概率.
考點(diǎn):離散型隨機(jī)變量及其分布列,離散型隨機(jī)變量的期望與方差
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:(1)四位學(xué)生申請(qǐng)大學(xué)共有3×3×3×3=81種,恰有兩位學(xué)生都申請(qǐng)甲這所大學(xué)有
C
2
4
•2•2=24種,從而示概率;
(2)ξ的取值有1,2,3;分別求概率得到分布列,并求數(shù)學(xué)期望;
(3)由古典概型概率公式求概率.
解答: 解:(1)四位學(xué)生申請(qǐng)大學(xué)共有3×3×3×3=81種,
恰有兩位學(xué)生都申請(qǐng)甲這所大學(xué)有
C
2
4
•2•2=24種,
故恰有兩位學(xué)生都申請(qǐng)甲這所大學(xué)的概率為
24
81
=
8
27
;
(2)由題意,ξ的取值有1,2,3;
故分布列為
ξ123
P
1
27
14
27
4
9
數(shù)學(xué)期望Eξ=1×
1
27
+2×
14
27
+3×
4
9
=
65
27
;
(3)在1,2,3中,函數(shù)f(x)=3sin
x+ξ
2
π,x∈R是偶函數(shù)時(shí),ξ=1或3;
故事件D發(fā)生的概率為
2
3
點(diǎn)評(píng):本題考查了離散型隨機(jī)變量的概率及數(shù)學(xué)期望的求法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求y=-
1
3
x3+2x2-3x+4的切線傾斜角范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x2+ax+b)e-x在x=1處取得極值.
(1)求b的值;
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種報(bào)紙,進(jìn)貨商當(dāng)天以每份進(jìn)價(jià)1元從報(bào)社購進(jìn),以每份售價(jià)2元售出.若當(dāng)天賣不完,剩余報(bào)紙報(bào)社以每份0.5元的價(jià)格回收.根據(jù)市場(chǎng)統(tǒng)計(jì),得到這個(gè)季節(jié)的日銷售量X(單位:份)的頻率分布直方圖(如圖所示),將頻率視為概率.
(Ⅰ)求頻率分布直方圖中a的值;
(Ⅱ)若進(jìn)貨量為n(單位:份),當(dāng)n≥X時(shí),求利潤(rùn)Y的表達(dá)式;
(Ⅲ)若當(dāng)天進(jìn)貨量n=400,求利潤(rùn)Y的分布列和數(shù)學(xué)期望E(Y)(統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=mx2-4x+m-3的值恒為負(fù),則實(shí)數(shù)m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C1:(x+1)2+y2=1,圓C2:(x-1)2+(y-4)2=1,動(dòng)圓C平分C1,C2的周長(zhǎng),求動(dòng)圓C圓心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,有一張長(zhǎng)為8,寬為4的矩形紙片ABCD,按如圖所示方法進(jìn)行折疊,使每次折疊后點(diǎn)B都落在AD邊上,此時(shí)記為B′(注:圖中EF為折痕,點(diǎn)F也可落在CD邊上)過點(diǎn)B′作B′T∥CD交EF于點(diǎn)T,求點(diǎn)T的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+1的單調(diào)減區(qū)間為(0,2)
(Ⅰ)求a,b的值;
(Ⅱ)當(dāng)x∈[0,2]時(shí),不等式mf′(x)+9m>x恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若過點(diǎn)A(3,0)的直線l與C:(x-1)2+y2=1有公共點(diǎn),則直線l的斜率的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案