A. | $\frac{2}{3}$ | B. | $\frac{4}{3}$ | C. | 2 | D. | 3 |
分析 由于圓C的方程為(x-4)2+y2=1,由題意可知,只需(x-4)2+y2=1與直線y=kx-2有公共點即可.
解答 解:∵圓C的方程為x2+y2-8x+15=0,整理得:(x-4)2+y2=1,即圓C是以(4,0)為圓心,1為半徑的圓;
又直線y=kx-2上至少存在一點,使得以該點為圓心,1為半徑的圓與圓C有公共點,
∴只需圓C′:(x-4)2+y2=1與直線y=kx-2有公共點即可.
設(shè)圓心C(4,0)到直線y=kx-2的距離為d,
則d=$\frac{|4k-2|}{\sqrt{1+{k}^{2}}}$≤2,即3k2-4k≤0,
∴0≤k≤$\frac{4}{3}$
∴k的最大值是$\frac{4}{3}$.
故選B.
點評 本題考查直線與圓的位置關(guān)系,將條件轉(zhuǎn)化為“(x-4)2+y2=4與直線y=kx-2有公共點”是關(guān)鍵,考查學生靈活解決問題的能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{1}{3}$ | B. | $\frac{1}{3}$ | C. | -3 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com