設(shè)集合A={x|2x2-5x-3=0},B={x|mx=1}且B⊆A,則實(shí)數(shù)m的取值集合為
 
.(用列舉法表示)
考點(diǎn):集合的包含關(guān)系判斷及應(yīng)用
專(zhuān)題:集合
分析:分B=∅和B≠∅兩種情況進(jìn)行討論,根據(jù)集合包含關(guān)系的判斷和應(yīng)用,分別求出滿(mǎn)足條件的m值,并寫(xiě)成集合的形式即可得到答案.
解答: 解:解:∵A={x|2x2-5x-3=0}={-
1
2
,3}
又∵B⊆A,
若B=∅,則m=0;
若B≠∅,則B={-
1
2
},或B={3},
即m=-2或m=
1
3

故滿(mǎn)足條件的實(shí)數(shù)m∈{0,-2,
1
3
}.
故答案為:{0,-2,
1
3
};
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是集合的包含關(guān)系判斷及應(yīng)用,本題有兩個(gè)易錯(cuò)點(diǎn),一是忽N=∅的情況,二是忽略題目要求求滿(mǎn)足條件的實(shí)數(shù)m的取值集合,而把答案沒(méi)用集合形式表示.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=Asin(ωx+ϕ)(其中A>0,ω>0,0<ϕ<π)在一個(gè)周期內(nèi)的圖象如下
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
log2xx≥1
f(x+2)x<1
,則f(8)=
 
;f(-3)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin(π-α)=2cos(2π-α),則
sin(π+α)+5cos(-α)
3cos(π-α)-cos(
π
2
+α)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1-x)2(1+y)5的展開(kāi)式中含xy2項(xiàng)的系數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)若函數(shù)f(x)=|2x+a|的單調(diào)遞增區(qū)間是[3,+∞),則實(shí)數(shù)a=
 
;
(2)若函數(shù)f(x)=|2x+a|在區(qū)間[3,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=3x,則f-1
1
9
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(1,x),
b
=(x2,2),且
a
b
,則實(shí)數(shù)x的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)是偶函數(shù),且f(x)在[0,+∞)上是增函數(shù),不等式f(ax2+x+1)≤f(1)對(duì)x∈[
1
2
,1]恒成立,則實(shí)數(shù)a的取值范圍是( 。
A、[-2,1]
B、[-3,0]
C、[-2,-1]
D、[-3,-2]

查看答案和解析>>

同步練習(xí)冊(cè)答案