【題目】四棱錐P﹣ABCD中,AB∥CD,AB⊥BC,AB=BC=1,PA=CD=2,PA⊥平面ABCD,E在棱PB上.
(Ⅰ)求證:AC⊥PD;
(Ⅱ)若VP﹣ACE,求證:PD∥平面AEC.
【答案】(Ⅰ)見解析;(Ⅱ)見解析
【解析】
(I)過作,判斷出四邊形為則方程,由此證得,結(jié)合證得平面,從而證得.
(II)利用題目所給體積求得到平面的距離,連接交于,連接,通過證明,證得,由此證得平面.
(Ⅰ)過A作AF⊥DC于F,∵AB∥CD,AB⊥BC,AB=BC=1,∴四邊形ABCF為正方形,則CF=DF=AF=1,
∴∠DAC=90°,得AC⊥DA,又PA⊥底面ABCD,AC平面ABCD,∴AC⊥PA,
又PA,AD平面PAD,PA∩AD=A,∴AC⊥平面PAD,又PD平面PAD,∴AC⊥PD;
(Ⅱ)設(shè)E到平面ABCD的距離為h,則VP﹣ACE,得h.
又PA=2,則PB:EB=PA:h=3:1.∵BC=1,CD=2,∴DB,連接DB交AC于O,連接OE,
∵△AOB∽△COD,∴DO:OB=2:1,得DB:OB=3:1,
∴PB:EB=DB:OB,則PD∥OE.又OE平面AEC,PD平面AEC,∴PD∥平面AEC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)成就的杰出代表作,其中《方田》章給出計(jì)算弧田面積所用的經(jīng)驗(yàn)方式為:弧田面積=(弦×矢+矢2),弧田(如圖)由圓弧和其所對(duì)弦所圍成,公式中“弦”指圓弧所對(duì)弦長(zhǎng),“矢”等于半徑長(zhǎng)與圓心到弦的距離之差,現(xiàn)有圓心角為,半徑等于米的弧田,按照上述經(jīng)驗(yàn)公式計(jì)算所得弧田面積約是
A. 平方米 B. 平方米
C. 平方米 D. 平方米
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,多邊形ABCDEF,四邊形ABCD為等腰梯形,,,,四邊形ADEF為直角梯形,,,以AD為折痕把等腰梯形ABCD折起,使得平面平面ADEF,如圖2.
(Ⅰ)證明:平面CDE;
(Ⅱ)求直線BE與平面EAC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)消費(fèi)者協(xié)會(huì)為了解本社區(qū)居民網(wǎng)購消費(fèi)情況,隨機(jī)抽取了100位居民作為樣本,就最近一年來網(wǎng)購消費(fèi)金額(單位:千元),網(wǎng)購次數(shù)和支付方式等進(jìn)行了問卷調(diào)查.經(jīng)統(tǒng)計(jì)這100位居民的網(wǎng)購消費(fèi)金額均在區(qū)間內(nèi),按分成6組,其頻率分布直方圖如圖所示.
(1)估計(jì)該社區(qū)居民最近一年來網(wǎng)購消費(fèi)金額的中位數(shù);
(2)將網(wǎng)購消費(fèi)金額在20千元以上者稱為“網(wǎng)購迷”,補(bǔ)全下面的列聯(lián)表,并判斷有多大把握認(rèn)為“網(wǎng)購迷與性別有關(guān)系”
男 | 女 | 總計(jì) | |
網(wǎng)購迷 | 20 | ||
非網(wǎng)購迷 | 45 | ||
總計(jì) | 100 |
附:.
臨界值表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),試討論的單調(diào)性;
(2)對(duì)任意時(shí),都有成立,試求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某運(yùn)動(dòng)制衣品牌為了成衣尺寸更精準(zhǔn),現(xiàn)選擇15名志愿者,對(duì)其身高和臂展進(jìn)行測(cè)量(單位:厘米),左圖為選取的15名志愿者身高與臂展的折線圖,右圖為身高與臂展所對(duì)應(yīng)的散點(diǎn)圖,并求得其回歸方程為,以下結(jié)論中不正確的為
A. 15名志愿者身高的極差小于臂展的極差
B. 15名志愿者身高和臂展成正相關(guān)關(guān)系,
C. 可估計(jì)身高為190厘米的人臂展大約為189.65厘米,
D. 身高相差10厘米的兩人臂展都相差11.6厘米,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)F是拋物線C:y2=2px(p>0)的焦點(diǎn),點(diǎn)M(x0,1)在C上,且|MF|=.
(1)求p的值;
(2)若直線l經(jīng)過點(diǎn)Q(3,-1)且與C交于A,B(異于M)兩點(diǎn),證明:直線AM與直線BM的斜率之積為常數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)查機(jī)構(gòu)對(duì)全國(guó)互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖(如圖①)、90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖(如圖②),則下列結(jié)論中不一定正確的是( )
注:90后指1990年及以后出生,80后指1980~1989年之間出生,80前指1979年及以前出生.
A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上
B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的20%
C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)90后比80前多
D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com