2.如圖,已知球的半徑為3,球內(nèi)接圓錐的高為h(h>3),體積為V,
(1)寫出以h表示V的函數(shù)關(guān)系式V(h);
(2)當(dāng)h為何值時(shí),V(h)有最大值,并求出該最大值.

分析 (1)利用已知條件,設(shè)出變量O'C=r,然后得到$V(h)=\frac{1}{3}π{r^2}h=\frac{1}{3}π(6h-{h^2})h=2π{h^2}-\frac{{π{h^3}}}{3}(3<h<6)$
(2)借助于函數(shù)求解導(dǎo)數(shù),然后判定單調(diào)性得到最值.

解答 解:(1)連接OC,設(shè)O'C=r,有OC=3,O'O=h-3,
則有(h-3)2+r2=32,即r2=6h-h2.…(3分)
$V(h)=\frac{1}{3}π{r^2}h=\frac{1}{3}π(6h-{h^2})h=2π{h^2}-\frac{{π{h^3}}}{3}(3<h<6)$…(6分)
(2)V'(h)=πh(4-h),
當(dāng)3<h<4,V'(h)>0,V(h)單增;
當(dāng)4<h<6,V'(h)<0,V(h)單減;
V(h)max=V(4).…(10分)
當(dāng)h=4時(shí),$V{(h)_{max}}=\frac{32}{3}π$.…(12分)

點(diǎn)評(píng) 本題考查函數(shù)解析式的求法,考查導(dǎo)數(shù)在研究最值問題中的運(yùn)用,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在平面直角坐標(biāo)系xOy中,圓O:x2+y2=r2(r>0)與圓M:(x-3)2+(y+4)2=4相交,則r的取值范圍是3<r<7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知點(diǎn)P(1,-2),Q(-1,-1),O(0,0),點(diǎn)M(x,y)在不等式組$\left\{\begin{array}{l}{x+2y-1≥0}\\{2x+y-5≤0}\\{y≤x+2}\end{array}\right.$所表示的平面區(qū)域內(nèi),則|$\overrightarrow{OP}$+$\overrightarrow{OQ}$+$\overrightarrow{OM}$|的取值范圍是(  )
A.[$\frac{\sqrt{2}}{2}$,5]B.[$\frac{1}{2}$,5]C.[$\frac{\sqrt{2}}{2}$,$\sqrt{5}$]D.[$\frac{1}{2}$,25]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)${({2-x})^6}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_6}{x^6}$,則|a1|+|a2|+…+|a6|的值是( 。
A.729B.665C.728D.636

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.直線6x+8y=b與圓x2+y2-2x-2y+1=0相切,則b的值是(  )
A.4或24B.4或-24C.-4或24D.-4或-24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知:二次函數(shù)y=x2-4x+3.
(1)將y=x2-4x+3化成y=a(x-h)2+k的形式;
(2)求出該二次函數(shù)圖象的對(duì)稱軸和頂點(diǎn)坐標(biāo);
(3)當(dāng)x取何值時(shí),y<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若將函數(shù)y=sin2x的圖象向右平移$\frac{π}{3}$個(gè)單位長度,則平移后圖象的函數(shù)解析式為yy=sin(2x-$\frac{2π}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.假設(shè)要抽查某種品牌的850顆種子的發(fā)芽率,抽取60粒進(jìn)行實(shí)驗(yàn).
利用隨機(jī)數(shù)表抽取種子時(shí),先將850顆種子按001,002,…,850進(jìn)行編號(hào),如果從隨機(jī)數(shù)表第8行第7列的數(shù)7開始向右讀,請你寫出第二個(gè)被檢測的種子的編號(hào)567.(下面摘取了隨機(jī)數(shù)表第7行至第9行)
84 42 17 53 31  57 24 55 06 88  77 04 74 47 67  21 76 33 50 25  83 92 12 06 76
63 01 63 78 59  16 95 55 67 19  98 10 50 71 75  12 86 73 58 07  44 39 52 38 79
33 21 12 34 29  78 64 56 07 82  52 42 07 44 38  15 51 00 13 42  99 66 02 79 54.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合$A=\{y|y={log_2}x,x>\frac{1}{2}\},B=\{x|x≥2\}$,則下列結(jié)論正確的是( 。
A.-3∈A∩BB.3∉B∪CC.A∪B=BD.A∩B=B

查看答案和解析>>

同步練習(xí)冊答案