【題目】如圖所示,等腰梯形ABCD的底角 A等于60°,直角梯形 ADEF所在的平面垂直于平面ABCD,∠EDA=90°,且ED=AD=2AB=2AF.
(1)證明:平面ABE⊥平面EBD;
(2)若三棱錐 A﹣BDE的外接球的體積為 ,求三棱錐 A﹣BEF的體積.
【答案】
(1)證明:因?yàn)槠矫鍭DEF⊥平面ABCD,
平面ADEF∩平面ABCD=AD,ED⊥AD,ED平面ADEF,
∴ED⊥平面ABCD,
∵AB平面ABCD,∴AB⊥ED,
又∵AD=2,AB=1,A=60°,∴AB⊥BD.
又BD∩ED=D,BD,ED平面EBD,
∴AB⊥平面EBD,
又AB平面ABE,所以平面ABE⊥平面EBD.
(2)解:由(1)得AD⊥DE,AB⊥BE,所以三棱錐A﹣BDE的外接球的球心為線段AE的中點(diǎn).
∴ ,解得 ,
∴ .
【解析】(1)由平面ADEF⊥平面ABCD,ED⊥AD,利用面面垂直的性質(zhì)定理可得:ED⊥平面ABCD,因此AB⊥ED,又AD=2,AB=1,A=60°,故AB⊥BD,即可證明AB⊥平面EBD,于是平面ABE⊥平面EBD,(2)由(1)得AD⊥DE,AB⊥BE,可得三棱錐A﹣BDE的外接球的球心為線段AE的中點(diǎn),再利用球的體積計(jì)算公式與三棱錐的體積計(jì)算公式即可得出.
【考點(diǎn)精析】利用平面與平面垂直的判定對(duì)題目進(jìn)行判斷即可得到答案,需要熟知一個(gè)平面過(guò)另一個(gè)平面的垂線,則這兩個(gè)平面垂直.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面上,點(diǎn)A、C為射線PM上的兩點(diǎn),點(diǎn)B、D為射線PN上的兩點(diǎn),則有 (其中S△PAB、S△PCD分別為△PAB、△PCD的面積);空間中,點(diǎn)A、C為射線PM上的兩點(diǎn),點(diǎn)B、D為射線PN上的兩點(diǎn),點(diǎn)E、F為射線PL上的兩點(diǎn),則有 =(其中VP﹣ABE、VP﹣CDF分別為四面體P﹣ABE、P﹣CDF的體積).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y2=2px(p>0),F(xiàn)為其焦點(diǎn),過(guò)點(diǎn)(4,0)作垂直于x軸的直線交拋物線于A,B兩點(diǎn),△ABF的周長(zhǎng)為18.
(1)求拋物線的方程;
(2)過(guò)拋物線上的定點(diǎn) 作兩條關(guān)于直線y=p對(duì)稱的直線分別交拋物線于C,D兩點(diǎn),連接CD,判斷直線CD的斜率是否為定值?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)= ﹣alnx.
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)求函數(shù)y=f(x)的單調(diào)區(qū)間和極值;
(Ⅲ)若函數(shù)f(x)在區(qū)間(1,e2]內(nèi)恰有兩個(gè)零點(diǎn),試求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AB=BC=CC1=2,AC=2 ,M是AC的中點(diǎn),則異面直線CB1與C1M所成角的余弦值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=(x+1)ex則對(duì)任意的m∈R,函數(shù)F(x)=f(f(x))﹣m的零點(diǎn)個(gè)數(shù)至多有( 。
A.3個(gè)
B.4個(gè)
C.6個(gè)
D.9個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系中,圓C的極坐標(biāo)方程為:ρ2=4ρ(cosθ+sinθ)﹣6.若以極點(diǎn)O為原點(diǎn),極軸所在直線為x軸建立平面直角坐標(biāo)系.
(Ⅰ)求圓C的參數(shù)方程;
(Ⅱ)在直角坐標(biāo)系中,點(diǎn)P(x,y)是圓C上動(dòng)點(diǎn),試求x+y的最大值,并求出此時(shí)點(diǎn)P的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著移動(dòng)互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車應(yīng)運(yùn)而生.某市場(chǎng)研究人員為了了解共享單車運(yùn)營(yíng)公司M的經(jīng)營(yíng)狀況,對(duì)該公司最近六個(gè)月內(nèi)的市場(chǎng)占有率進(jìn)行了統(tǒng)計(jì),并繪制了相應(yīng)的折線圖.
(Ⅰ)由折線圖可以看出,可用線性回歸模型擬合月度市場(chǎng)占有率y與月份代碼x之間的關(guān)系.求y關(guān)于x的線性回歸方程,并預(yù)測(cè)M公司2017年4月份的市場(chǎng)占有率;
(Ⅱ)為進(jìn)一步擴(kuò)大市場(chǎng),公司擬再采購(gòu)一批單車.現(xiàn)有采購(gòu)成本分別為1000元/輛和1200元/輛的A、B兩款車型可供選擇,按規(guī)定每輛單車最多使用4年,但由于多種原因(如騎行頻率等)會(huì)導(dǎo)致車輛報(bào)廢年限各不相同.考慮到公司運(yùn)營(yíng)的經(jīng)濟(jì)效益,該公司決定先對(duì)兩款車型的單車各100輛進(jìn)行科學(xué)模擬測(cè)試,得到兩款單車使用壽命頻數(shù)表如下:
報(bào)廢年限 | 1年 | 2年 | 3年 | 4年 | 總計(jì) |
A | 20 | 35 | 35 | 10 | 100 |
B | 10 | 30 | 40 | 20 | 100 |
經(jīng)測(cè)算,平均每輛單車每年可以帶來(lái)收入500元.不考慮除采購(gòu)成本之外的其他成本,假設(shè)每輛單車的使用壽命都是整數(shù)年,且以頻率作為每輛單車使用壽命的概率.如果你是M公司的負(fù)責(zé)人,以每輛單車產(chǎn)生利潤(rùn)的期望值為決策依據(jù),你會(huì)選擇采購(gòu)哪款車型?
參考數(shù)據(jù):, , =17.5.
參考公式:
回歸直線方程為 其中 = , = ﹣ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a>1,函數(shù)f(x)=(1+x2)ex﹣a.
(1)求f(x)的單調(diào)區(qū)間;
(2)證明f(x)在(﹣∞,+∞)上僅有一個(gè)零點(diǎn);
(3)若曲線y=f(x)在點(diǎn)P處的切線與x軸平行,且在點(diǎn)M(m,n)處的切線與直線OP平行,(O是坐標(biāo)原點(diǎn)),證明:m≤ ﹣1.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com