【題目】已知函數(shù)

1)若函數(shù)上單調(diào)遞增,求實數(shù)的值;

2)定義:若直線與曲線都相切,我們稱直線為曲線、的公切線,證明:曲線總存在公切線.

【答案】1;(2)見解析.

【解析】

1)求出導(dǎo)數(shù),問題轉(zhuǎn)化為上恒成立,利用導(dǎo)數(shù)求出的最小值即可求解;

2)分別設(shè)切點橫坐標為,利用導(dǎo)數(shù)的幾何意義寫出切線方程,問題轉(zhuǎn)化為證明兩直線重合,只需滿足有解即可,利用函數(shù)的導(dǎo)數(shù)及零點存在性定理即可證明存在.

1

函數(shù)上單調(diào)遞增等價于上恒成立.

,得

所以單調(diào)遞減,在單調(diào)遞增,則

因為,則上恒成立等價于上恒成立;

,

所以,即

2)設(shè)的切點橫坐標為,則

切線方程為……

設(shè)的切點橫坐標為,則

切線方程為……

若存在,使①②成為同一條直線,則曲線存在公切線,由①②得消去

,則

所以,函數(shù)在區(qū)間上單調(diào)遞增,

,使得

時總有

時,

上總有解

綜上,函數(shù)總存在公切線.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】探月工程“嫦娥四號”探測器于2018128日成功發(fā)射,實現(xiàn)了人類首次月球背面軟著陸.以嫦娥四號為任務(wù)圓滿成功為標志,我國探月工程四期和深空探測工程全面拉開序幕.根據(jù)部署,我國探月工程到2020年前將實現(xiàn)“繞、落、回”三步走目標.為了實現(xiàn)目標,各科研團隊進行積極的備戰(zhàn)工作.某科研團隊現(xiàn)正準備攻克甲、乙、丙三項新技術(shù),甲、乙、丙三項新技術(shù)獨立被攻克的概率分別為,若甲、乙、丙三項新技術(shù)被攻克,分別可獲得科研經(jīng)費萬,萬,.若其中某項新技術(shù)未被攻克,則該項新技術(shù)沒有對應(yīng)的科研經(jīng)費.

1)求該科研團隊獲得萬科研經(jīng)費的概率;

2)記該科研團隊獲得的科研經(jīng)費為隨機變量,求的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】互聯(lián)網(wǎng)正在改變著人們的生活方式,在日常消費中手機支付正逐漸取代現(xiàn)金支付成為人們首選的支付方式. 某學生在暑期社會活動中針對人們生活中的支付方式進行了調(diào)查研究. 采用調(diào)查問卷的方式對100名18歲以上的成年人進行了研究,發(fā)現(xiàn)共有60人以手機支付作為自己的首選支付方式,在這60人中,45歲以下的占,在仍以現(xiàn)金作為首選支付方式的人中,45歲及以上的有30人.

(1)從以現(xiàn)金作為首選支付方式的40人中,任意選取3人,求這3人至少有1人的年齡低于45歲的概率;

(2)某商家為了鼓勵人們使用手機支付,做出以下促銷活動:凡是用手機支付的消費者,商品一律打八折. 已知某商品原價50元,以上述調(diào)查的支付方式的頻率作為消費者購買該商品的支付方式的概率,設(shè)銷售每件商品的消費者的支付方式都是相互獨立的,求銷售10件該商品的銷售額的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】拋物線的焦點為F,過點F的直線交拋物線于AB兩點.

1)若,求直線AB的斜率;

2)設(shè)點M在線段AB上運動,原點O關(guān)于點M的對稱點為C,求四邊形OACB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中,側(cè)面是菱形,其對角線的交點為,且

1)求證:平面;

2)設(shè),若直線與平面所成的角為,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象在處的切線方程是.

1)求的值;

2)若函數(shù),討論的單調(diào)性與極值;

3)證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,橢圓經(jīng)過點,右焦點到右準線和左頂點的距離相等,經(jīng)過點的直線交橢圓于點.

1)求橢圓的標準方程;

2)點是直線上在橢圓外的一點,且,證明:點在定直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著我國經(jīng)濟的發(fā)展,居民收入逐年增長.某地區(qū)2014年至2018年農(nóng)村居民家庭人均純收入(單位:千元)的數(shù)據(jù)如下表:

年份

2014

2015

2016

2017

2018

年份代號

1

2

3

4

5

人均純收入

5

6

7

8

10

1)求關(guān)于的線性回歸方程;

2)利用(1)中的回歸方程,分析2014年至2018年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測2019年該地區(qū)農(nóng)村居民家庭人均純收入為多少?

附:回歸直線的斜率和截距的最小二乘估計公式分別為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市移動公司為了提高服務(wù)質(zhì)量,決定對使用A,B兩種套餐的集團用戶進行調(diào)查,準備從本市個人數(shù)超過1000人的大集團和8個人數(shù)低于200人的小集團中隨機抽取若干個集團進行調(diào)查,若一次抽取2個集團,全是小集團的概率為

求n的值;

若取出的2個集團是同一類集團,求全為大集團的概率;

若一次抽取4個集團,假設(shè)取出小集團的個數(shù)為X,求X的分布列和期望.

查看答案和解析>>

同步練習冊答案