11.已知數(shù)列{an}的前n項和為Sn,且an=$\frac{1}{(2n+1)(2n+3)}$,則S9等于( 。
A.$\frac{1}{7}$B.$\frac{2}{7}$C.$\frac{4}{7}$D.$\frac{4}{21}$

分析 利用拆項法將an=$\frac{1}{(2n+1)(2n+3)}$轉(zhuǎn)化為an=$\frac{1}{2}$($\frac{1}{2n+1}$-$\frac{1}{2n+3}$)的形式,然后由裂項相消法來求S9的值.

解答 解:∵an=$\frac{1}{(2n+1)(2n+3)}$=$\frac{1}{2}$($\frac{1}{2n+1}$-$\frac{1}{2n+3}$),
∴S9=$\frac{1}{2}$×($\frac{1}{3}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{7}$+$\frac{1}{7}$-$\frac{1}{9}$+…+$\frac{1}{19}$-$\frac{1}{21}$)
=$\frac{1}{2}$×($\frac{1}{3}$-$\frac{1}{21}$)
=$\frac{1}{7}$.
故選:A.

點評 本題考查了數(shù)列的求和.利用拆項法和裂項相消法求和法是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.將函數(shù)f(x)=sin(2x+$\frac{π}{3}$)的圖象向右平移$\frac{π}{2}$個單位長度,得到函數(shù)y=g(x)的圖象,則$\int_0^π{g(x)}dx$( 。
A.0B.πC.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知命題p:若θ是第二象限角,則sinθ(1-2cos2$\frac{θ}{2}$)>0,則( 。
A.命題p的否命題為:若θ是第二象限角,則sinθ(1-2 cos2$\frac{θ}{2}$)<0
B.命題p的否命題為:若θ不是第二象限角,則sinθ(1-2 cos2$\frac{θ}{2}$)>0
C.命題p是假命題
D.命題p的逆命題是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=sin2x+acosx+5,a∈R.
(1)當(dāng)a=1時,求函數(shù)f(x)的最大值和最小值以及相應(yīng)的x的取值;
(2)求函數(shù)f(x)在R上的最大值g(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在數(shù)列{an}中,a1=-2,an+1=$\frac{{1+{a_n}}}{{1-{a_n}}}$,則a2011=( 。
A.-2B.-$\frac{1}{3}$C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖,在梯形ABCD中,AD∥BC∥EF,E是AB的中點,F(xiàn)是CD的中點,EF交BD于G,交AC于H,若AD=5,BC=8,則GH=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.某社區(qū)成年人中老年人140人,中年人210,青年350人,從所有成年人中采取分層抽樣的方法抽取m人進行
問卷調(diào)查,已知老年人中抽取的人數(shù)位4人,則中年人中抽取的人數(shù)是6 人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=$\frac{\left|x\right|}{x+2}$-kx2(k∈R)有兩個零點,則k的取值范圍k<0或0<k<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某校夏令營有3名男同學(xué)A,B,C和3名女同學(xué)X,Y,Z,其年級情況如表:
一年級二年級三年級
男同學(xué)ABC
女同學(xué)XYZ
現(xiàn)從這6名同學(xué)中隨機選出2人參加知識競賽(每人被選到的可能性相同).設(shè)M為事件“選出的2人來自不同年級且恰有1名男同學(xué)和1名女同學(xué)”,則事件M發(fā)生的概率為( 。
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

同步練習(xí)冊答案