橢圓x 2+4y 2=1的離心率是     
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)
已知橢圓C:過點,且長軸長等于4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)是橢圓C的兩個焦點,⊙O是以F1F2為直徑的圓,直線l: y=kx+m與⊙O相切,并與橢圓C交于不同的兩點A、B,若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知橢圓C:的離心率,且原點到直線的距離為
(Ⅰ)求橢圓的方程 ;
(Ⅱ)過點作直線與橢圓C交于兩點,求面積的最大值.
四.附加題 (共20分,每小題10分)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題12分)已知是橢圓上的三點,其中點的坐標為過橢圓的中心,且
(1)求橢圓的方程;
(2)過點的直線(斜率存在時)與橢圓交于兩點,設為橢圓軸負半軸的交點,且.求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓C:的離心率為,橢圓C上任意一點到橢圓兩焦點的距離和為6.
(1)求橢圓C的方程;
(2)設直線與橢圓C交于A,B兩點,點P(0,1),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
已知橢圓E的中心在坐標原點,焦點在x軸上,離心率為,且橢圓E上一點到兩個焦點距離之和為4;是過點P(0,2)且互相垂直的兩條直線,交E于A,B兩點,交E交C,D兩點,AB,CD的中點分別為M,N。
(1)求橢圓E的方程;
(2)求k的取值范圍;
(3)求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若橢圓的離心率為,則=________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓中心在原點,一個焦點為F(-2,0),且長軸長是短軸長的2倍,則該橢圓的標準方程是(   )
                  

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

兩個焦點的坐標分別是、,并且經(jīng)過點的橢圓方程是
A   B  C   D 

查看答案和解析>>

同步練習冊答案